Visual perception studies typically focus either on optic flow structure or image structure, but not on the combination and interaction of these two sources of information. Each offers unique strengths in contrast to the other's weaknesses. Optic flow yields intrinsically powerful information about 3D structure, but is ephemeral. It ceases when motion stops. Image structure is less powerful in specifying 3D structure, but is stable. It remains when motion stops. Optic flow and image structure are intrinsically related in vision because the optic flow carries one image to the next. This relation is especially important in the context of progressive occlusion, in which optic flow provides information about the location of targets hidden in subsequent image structure. In four experiments, we investigated the role of image structure in "embodied memory" in contrast to memory that is only in the head. We found that either optic flow (Experiment 1) or image structure (Experiment 2) alone were relatively ineffective, whereas the combination was effective and, in contrast to conditions requiring reliance on memory-in-the-head, much more stable over extended time (Experiments 2 through 4). Limits well documented for visual short memory (that is, memory-in-the-head) were strongly exceeded by embodied memory. The findings support J. J. Gibson's (1979/1986, The Ecological Approach to Visual Perception, Boston, MA, Houghton Mifflin) insights about progressive occlusion and the embodied nature of perception and memory.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1037/a0032070 | DOI Listing |
Photodiagnosis Photodyn Ther
January 2025
Istanbul Medeniyet University, Faculty of Medicine, Department of Ophthalmology, Istanbul, Turkey. Electronic address:
Objective: Imaging techniques have demonstrated changes in the choroid and retina in acute central serous chorioretinopathy (CSCR), but the effects on the optic nerve head (ONH) remain unclear. This study investigates ONH structural changes in acute CSCR using enhanced deep imaging optic coherence tomography (EDI-OCT).
Methods: A prospective cohort study included 51 acute CSCR patients and 51 healthy controls aged 18-65 years.
Cell Rep
January 2025
Department of Clinical and Molecular Medicine, Norwegian University of Science and Technology, Erling Skjalgssons Gate 1, 7491 Trondheim, Norway; Kavli Institute for Systems Neuroscience and Centre for Algorithms in the Cortex, Norwegian University of Science and Technology, Olav Kyrres Gate 9, 7030 Trondheim, Norway. Electronic address:
The brain uses a specialized system to transport cerebrospinal fluid (CSF), consisting of interconnected ventricles lined by motile ciliated ependymal cells. These cells act jointly with CSF secretion and cardiac pressure gradients to regulate CSF dynamics. To date, the link between cilia-mediated CSF flow and brain function is poorly understood.
View Article and Find Full Text PDFUrolithiasis
January 2025
Department of Urology, University of Michigan, 1500 E. Medical Center Drive, Ann Arbor, MI, 48109-5330, USA.
Understanding renal pelvis pressure (P) during ureteroscopy (URS) has become increasingly important. High irrigation rates, desirable to maintain visualization and limit thermal dose, can increase P. Use of a multi-channel ureteroscope (m-ureteroscope) with a dedicated drainage channel is one strategy that may facilitate simultaneous low P and high flowrate.
View Article and Find Full Text PDFRev Sci Instrum
January 2025
Max Planck Institute for Chemical Energy Conversion, Mülheim an der Ruhr 45470, Germany.
X-ray spectroscopies are uniquely poised to describe the geometric and electronic structure of metalloenzyme active sites under a wide variety of sample conditions. UV/Vis (ultraviolet/visible) spectroscopy is a similarly well-established technique that can identify and quantify catalytic intermediates. The work described here reports the first simultaneous collection of full in situ UV/Vis and high-energy resolution fluorescence detected x-ray absorption spectra.
View Article and Find Full Text PDFLight Sci Appl
January 2025
Department of Electrical and Computer Engineering, University of Delaware, Newark, Delaware, 19716, USA.
Exceptional points (EPs) have been extensively explored in mechanical, acoustic, plasmonic, and photonic systems. However, little is known about the role of EPs in tailoring the dynamic tunability of optical devices. A specific type of EPs known as chiral EPs has recently attracted much attention for controlling the flow of light and for building sensors with better responsivity.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!