New self-nanoemulsifying drug delivery system (SNEDDS) with amphiphilic diblock copolymer methoxy poly (ethylene glycol)-block-poly (ε-caprolactone).

Pharm Dev Technol

Department of Pharmaceutical Engineering, Shanghai Key Lab New Drug Design, School of Pharmacy, East China University of Science and Technology, Shanghai, China.

Published: December 2013

The objective of the study is to prepare a new self-nanoemulsifying drug delivery system (SNEDDS) with amphiphilic diblock copolymers methoxy poly (ethylene glycol)-block-poly (ε-caprolactone) (MPEG-b-PCL) and to investigate the effect of MPEG-b-PCL on the characteristics of SNEDDS. MPEG-b-PCL was synthesized and characterized by (1)H-NMR, IR and GPC. Various ratios of MPEG-b-PCL copolymers and Tween 80 were used as emulsifier to prepare the new SNEDDS. SNEDDS with high oil and low surfactant content forms a semi-solid gel at room temperature, which could be effectively sealed in soft or hard capsules. The mean droplet size of SNEDDS-generated nanoemulsions significantly decreased after the addition of diblock polymer and increased with increase of PCL chain in MPEG-b-PCL. The drug Coenzyme Q10 (CoQ10) was chosen as the model compound in this study due to its insolubility in water. CoQ10 from SNEDDS was rapidly dissolved regardless of the fluid condition.

Download full-text PDF

Source
http://dx.doi.org/10.3109/10837450.2012.734517DOI Listing

Publication Analysis

Top Keywords

self-nanoemulsifying drug
8
drug delivery
8
delivery system
8
system snedds
8
snedds amphiphilic
8
amphiphilic diblock
8
methoxy poly
8
poly ethylene
8
ethylene glycol-block-poly
8
glycol-block-poly ε-caprolactone
8

Similar Publications

Valsartan (VST) is an angiotensin II receptor antagonist with low oral bioavailability. The present study developed a solid self-nanoemulsifying drug delivery system (S-SNEDDS) to enhance the oral absorption and bioavailability of VST. VST-loaded liquid SNEDDS (VST@L-SNEDDS) was prepared by investigating the solubility of VST and constructing the pseudo-ternary phase diagrams.

View Article and Find Full Text PDF

Design, evaluation, and in vitro-in vivo correlation of self-nanoemulsifying drug delivery systems to improve the oral absorption of exenatide.

J Control Release

January 2025

Department of Pharmacy, University of Copenhagen, Universitetsparken 2, Copenhagen 2100, Denmark; Bioneer A/S, Kogle Allé 2, Hørsholm 2970, Denmark. Electronic address:

The ability to predict the absorption of exenatide (Ex), a GLP-1 analogue, after oral dosing to rats in self-nanoemulsifying drug delivery systems (SNEDDS), using in vitro methods, was assessed. Ex was complexed with soybean phosphatidylcholine (SPC) prior to loading into SNEDDS. A design of experiments (DoE) approach was employed to develop SNEDDS incorporating medium-chain triglycerides (MCT), medium-chain mono- and diglycerides (MGDG), Kolliphor® RH40, and monoacyl phosphatidylcholine.

View Article and Find Full Text PDF

Introduction: Rhein, a natural bioactive lipophilic compound with numerous pharmacological activities, faces limitations in clinical application due to poor aqueous solubility and low bioavailability. Thus, this study aimed to develop a rhein-loaded self-nano emulsifying drug delivery system (RL-SNEDDS) to improve solubility and bioavailability.

Methods: The RL-SNEDDS was prepared by aqueous titration method with eucalyptus oil (oil phase), tween 80 (surfactant), and PEG 400 (co-surfactant) and optimization was performed by 3 factorial design.

View Article and Find Full Text PDF

Flurbiprofen (FBP) is poorly water-soluble BCS class II drug with anti-inflammatory and analgesic effects, used to treat arthritis and degenerative joint diseases. This study was aimed to develop SNEDDS loaded with FBP. Six SNEDDS using two oils olive oil (F, F, F) and castor oil (F, F, F) with three different Smix ratios consisting of Tween 20 and PEG 400 (1:1, 1:2, 2:1) were prepared and characterized.

View Article and Find Full Text PDF

This study aims to develop a self-nanoemulsifying drug delivery system (SNEDDS) to solve the limited oral bioavailability problem of apigenin, a bioactive flavonoid. Apigenin-loaded SNEDDS consisting of Gelucire 44/14, Tween 80, and PEG 400 in the mass ratios of 25:37.5:37.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!