In the 4-meth-oxy-quinoline-2-carboxyl-ate anion of the title salt, C5H8N3(+)·C11H8NO3(-), the dihedral angle between the quinoline ring system and the carboxyl-ate group is 16.54 (15)°. In the crystal, the cations and anions are linked via N-H⋯O and N-H⋯N hydrogen bonds, forming a centrosymmetric 2 + 2 aggregate with R2(2)(9) and R4(2)(8) ring motifs. These units are further connected via N-H⋯O hydrogen bonds into a layer parallel to the bc plane. The crystal structure is also stabilized by weak C-H⋯O hydrogen bonds and π-π inter-actions between pyridine rings [centroid-centroid distance = 3.5886 (8) Å] and between pyridine and benzene rings [centroid-centroid distance = 3.6328 (8) Å].
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3589023 | PMC |
http://dx.doi.org/10.1107/S1600536812047642 | DOI Listing |
Proc Natl Acad Sci U S A
January 2025
California Institute for Quantitative Biosciences, University of California, Berkeley, CA 94720.
Polysaccharide monooxygenase (PMO) catalysis involves the chemically difficult hydroxylation of unactivated C-H bonds in carbohydrates. The reaction requires reducing equivalents and will utilize either oxygen or hydrogen peroxide as a cosubstrate. Two key mechanistic questions are addressed here: 1) How does the enzyme regulate the timely and tightly controlled electron delivery to the mononuclear copper active site, especially when bound substrate occludes the active site? and 2) How does this electron delivery differ when utilizing oxygen or hydrogen peroxide as a cosubstrate? Using a computational approach, potential paths of electron transfer (ET) to the active site copper ion were identified in a representative AA9 family PMO from (PMO9E).
View Article and Find Full Text PDFJ Am Chem Soc
January 2025
Department of Chemistry, University of Houston, Houston, Texas 77204-5003, United States.
Monoanionic, bidentate-auxiliary-directed, cobalt-catalyzed C-H bond functionalization has become a very useful tool in organic synthesis. A comprehensive investigation into isolated organometallic intermediates and their reactivity within the catalytic cycle is lacking. We report here mechanistic studies of cobalt-catalyzed, aminoquinoline-directed C(sp)-H bond functionalization.
View Article and Find Full Text PDFJ Phys Chem A
January 2025
School of Chemistry and Chemical Engineering, Hainan University, Haikou 570228, China.
A recruiting rate () of 0.1-5 s has been proposed as the criterion for super-resolution spontaneously blinking rhodamines. Accurate prediction of the recruiting rate () of rhodamines is very important for developing spontaneously blinking rhodamines.
View Article and Find Full Text PDFInorg Chem
January 2025
School of Chemistry and Chemical Engineering, and Institute for Innovative Materials and Energy, Yangzhou University, 180 Si-Wang-Ting Road, Yangzhou 225002, China.
The interaction between electrocatalytic active centers and their support is essential to the electrocatalytic performance, which could regulate the electronic structure of the metal centers but requires precise design. Herein, we report on covalent grafting of graphene quantum dots (GQDs) on stepped TiO as a support to anchoring cobalt phosphide nanoparticles (CoP/GQD/S-TiO) for electrocatalytic hydrogen evolution reaction (HER). The covalent ester bonds between GQDs and TiO endow enlarged anchoring sites to achieve highly dispersed electroactive CoP nanoparticles but, more importantly, provide an efficient electron-transfer pathway from TiO to GQDs which could regulate the electronic structure of CoP.
View Article and Find Full Text PDFInorg Chem
January 2025
Department of Chemistry, Biochemistry and Pharmaceutical Sciences, University of Bern, 3012 Bern, Switzerland.
Binuclear silver(I) and copper(I) complexes, and , with bridging diphenylphosphine ligands were prepared. In , the silver(I) center is located inside a trigonal plane composed of three phosphorus donors from three separate and bridging dppm ligands. The fourth coordination site is filled with neighboring silver(I) ions.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!