The ability to replace the native heme cofactor of proteins with an unnatural porphyrin of interest affords new opportunities to study heme protein chemistry and engineer heme proteins for new functions. Previous methods for porphyrin substitution rely on removal of the native heme followed by porphyrin reconstitution. However, conditions required to remove the native heme often lead to denaturation, limiting success at heme replacement. An expression-based strategy for porphyrin substitution was developed to circumvent the heme removal and reconstitution steps, whereby unnatural porphyrin incorporation occurs under biological conditions. The approach uses the RP523 strain of Escherichia coli, which has a deletion of a key gene involved in heme biosynthesis and is permeable to porphyrins. The expression-based strategy for porphyrin substitution detailed here is a robust platform to generate heme proteins containing unnatural porphyrins for diverse applications.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/978-1-62703-321-3_8 | DOI Listing |
Spectrochim Acta A Mol Biomol Spectrosc
January 2025
Institute of Intelligent Machines, Hefei Institute of Intelligent Agriculture, CAS Key Laboratory of High Magnetic Field and Ion Beam Physical Biology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230031, China; Science Island Branch of Graduate School, University of Science & Technology of China, Hefei 230026, China. Electronic address:
The out-of-plane (OOP) deformations of metalloporphyrins macrocycle are closely related to their biological functions, and Raman spectroscopy is a powerful tool for investigating OOP deformations. However, due to the interplay of electronic structure, substituents, porphyrin macrocycle in-plane (IP) and OOP deformations, it is challenging to measure the OOP deformations directly, or, establish a confirmative correlation between the frequency shifts of characteristic peaks and specific OOP deformation changes. In this work, we first selected the model porphyrin Ni-P and employed DFT calculations to explore the relationship between the ruffling and saddling deformation changes and their corresponding Raman spectral differences.
View Article and Find Full Text PDFOrg Biomol Chem
January 2025
Department of Chemistry, School of Advanced Sciences, Vellore Institute of Technology, Vellore, Tamil Nadu-632014, India.
A porphyrin comprising a carboxyl-functionalized pyridine moiety was synthesized and characterized using H NMR, C NMR, FT-IR, powder-XRD, BET, ICP-MS, SEM and EDAX. The proton level (H = 1.19) and energy band gap (1.
View Article and Find Full Text PDFRSC Adv
January 2025
Department of Chemistry, Faculty of Science, University of Maragheh P.O Box 55181-83111 Maragheh Iran.
In this study, we present the design, synthesis, and utilization of a covalent triazine framework (CTF) formed by the condensation of , , -tris(4-(aminomethyl)benzyl)-1,3,5-triazine-2,4,6-triamine and 2,4,6-tris(4-formylphenoxy)-1,3,5-triazine on which silica is immobilized (TPT-TAT/silica) as an innovative catalyst for porphyrins synthesis. Under solvothermal conditions, the condensation of triamine and trialdehyde precursors led to the formation of a covalent triazine framework (CTF) with a high nitrogen content. The resulting CTF is characterized by its extensive porosity and elevated nitrogen levels, which are critical for the creation of catalytic active sites.
View Article and Find Full Text PDFDalton Trans
January 2025
Departamento de Física dos Materiais e Mecânica, Instituto de Física, Universidade de São Paulo, C. P. 66318, São Paulo, SP, 05508-090, Brazil.
Distortions in the porphyrin core from planarity can trigger a unique structure-property relationship, imparting its basicity, chemical stability, redox potential, and excited-state energetics, among other properties. The colour change promoted by such distortion is signed by red shifts in its electronic absorption spectra. The adsorption of guest -substituted free-base porphyrin species onto inorganic hosts, such as clay minerals (layered aluminium or magnesium silicates), is known to further promote colour changes.
View Article and Find Full Text PDFInorg Chem
January 2025
School of Chemistry, Sun Yat-Sen University, Guangzhou 510006, China.
Regioselective -alkylation of benzotriazole is highly important to prepare biological materials. Herein, a series of AB-typed porphyrin and metalloporphyrin compounds were prepared. Catalytic results disclosed that Ir(III) pentafluorophenyl-substituted porphyrin promoted selective -alkylation of benzotriazole, and meanwhile, Fe(III) pyridine-substituted porphyrin accelerated -alkylation of benzotriazole.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!