Sparse signal recovery methods for multiplexing PET detector readout.

IEEE Trans Med Imaging

Radiology Department, Stanford University, Stanford, CA 94305, USA.

Published: May 2013

Nuclear medicine imaging detectors are commonly multiplexed to reduce the number of readout channels. Because the underlying detector signals have a sparse representation, sparse recovery methods such as compressed sensing may be used to develop new multiplexing schemes. Random methods may be used to create sensing matrices that satisfy the restricted isometry property. However, the restricted isometry property provides little guidance for developing multiplexing networks with good signal-to-noise recovery capability. In this work, we describe compressed sensing using a maximum likelihood framework and develop a new method for constructing multiplexing (sensing) matrices that can recover signals more accurately in a mean square error sense compared to sensing matrices constructed by random construction methods. Signals can then be recovered by maximum likelihood estimation constrained to the support recovered by either greedy l₀ iterative algorithms or l₁-norm minimization techniques. We show that this new method for constructing and decoding sensing matrices recovers signals with 4%-110% higher SNR than random Gaussian sensing matrices, up to 100% higher SNR than partial DCT sensing matrices 50%-2400% higher SNR than cross-strip multiplexing, and 22%-210% higher SNR than Anger multiplexing for photoelectric events.

Download full-text PDF

Source
http://dx.doi.org/10.1109/TMI.2013.2246182DOI Listing

Publication Analysis

Top Keywords

sensing matrices
24
higher snr
16
recovery methods
8
sensing
8
compressed sensing
8
restricted isometry
8
isometry property
8
maximum likelihood
8
method constructing
8
multiplexing
6

Similar Publications

Integrating noble metal nanostructures, specifically silver nanoparticles, into sensor designs has proven to enhance sensor performance across key metrics, including response time, stability, and sensitivity. However, a critical gap remains in understanding the unique contributions of various synthesis parameters on these enhancements. This study addresses this gap by examining how factors such as temperature, growth time, and choice of capping agents influence nanostructure shape and size, optimizing sensor performance for diverse conditions.

View Article and Find Full Text PDF

Aliphatic substrates-mediated unique rapid room temperature synthesis of carbon quantum dots for fenofibrate versatile analysis.

Anal Chim Acta

February 2025

Department of Pharmaceutical Analytical Chemistry, Faculty of Pharmacy, Mansoura University, Mansoura, 35516, Egypt. Electronic address:

Background: The current synthetic strategies for carbon dots (CDs) are usually time-consuming, rely on complicated processes, and need high temperatures and energy. Recent studies have successfully synthesized CDs at room temperature. Unfortunately, most CDs synthesized at room temperature are obtained under harsh reaction conditions, prepared using aromatic precursors, or need a long time to generate.

View Article and Find Full Text PDF

Wood membrane: A sustainable electrochemical platform for enzyme-free and pretreatment-free monitoring uric acid in bodily fluids.

Anal Chim Acta

January 2025

School of Forensic Medicine, China Medical University, No.77 Puhe Road, Shenyang, Liaoning, 110122, China. Electronic address:

The detection of biomarkers is crucial for assessing disease status and progression. Uric acid (UA), a common biomarker in body fluids, plays an important role in the diagnosis and monitoring of conditions such as hyperuricemia, chronic kidney disease, and cardiovascular disease. However, the low concentration of UA in non-invasive body fluids, combined with numerous interfering substances, makes its detection challenging.

View Article and Find Full Text PDF

An eco-friendly nitrogen-passivated carbon dot (N-CDs)-based fluorescent sensor was designed for the selective and sensitive detection of thiophanate-methyl, a widely applied fungicide in agriculture. The synthesized N-CDs exhibited robust fluorescence and remarkable photostability, which contributed to the sensor's performance. Notably, the sensor achieved a detection limit as low as 4.

View Article and Find Full Text PDF

A novel dual-mode microfluidic sensing platform integrating photoelectrochemical (PEC) and fluorescence (FL) sensors was developed for the sensitive monitoring of heart fatty acid binding protein (h-FABP). First, BiVO/AgInS (BVAIS) composites with excellent photoelectric activity were synthesized as sensing matrices. The BVAIS heterojunction with a well-matched internal energy level structure provided a stable photocurrent.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!