Despite the large body of literature on ecomorphological adaptations to foraging in waterfowl, little attention has been paid to their sensory systems, especially vision. Here, we compare eye shape and retinal topography across 12 species representing 4 different foraging modes. Eye shape was significantly different among foraging modes, with diving and pursuit-diving species having relatively smaller corneal diameters compared to non-diving species. This may be associated with differences in ambient light intensity while foraging or an ability to tightly constrict the pupil in divers in order to facilitate underwater vision. Retinal topography was similar across all species, consisting of an oblique visual streak, a central area of peak cell density, and no discernible fovea. Because the bill faces downwards when the head is held in the normal posture in waterfowl, the visual streak will be held horizontally, allowing the horizon to be sampled with higher visual acuity. Estimates of spatial resolving power were similar among species with only the Canada goose having a higher spatial resolution. Overall, we found no evidence of ecomorphological adaptations to different foraging modes in the retinal ganglion cell layer in waterfowl. Rather, retinal topography in these birds seems to reflect the 'openness' of their habitats.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s00359-013-0802-1DOI Listing

Publication Analysis

Top Keywords

retinal topography
16
foraging modes
16
eye shape
12
shape retinal
8
ecomorphological adaptations
8
adaptations foraging
8
topography species
8
visual streak
8
foraging
6
retinal
5

Similar Publications

Diverse retinal ganglion cells (RGCs) transmit distinct visual features from the eye to the brain. Recent studies have categorized RGCs into 45 types in mice based on transcriptomic profiles, showing strong alignment with morphological and electrophysiological properties. However, little is known about how these types are spatially arranged on the two-dimensional retinal surface-an organization that influences visual encoding-and how their local microenvironments impact development and neurodegenerative responses.

View Article and Find Full Text PDF

Engrailed1 in Parvalbumin-Positive Neurons Regulates Eye-Specific Retinogeniculate Segregation and Visual Function.

J Neurosci Res

December 2024

State Key Laboratory of Medical Neurobiology, MOE Frontiers Center for Brain Science, Institutes of Brain Science, Institute for Medical and Engineering Innovation, Eye and ENT Hospital, Fudan University, Shanghai, China.

Homeobox transcription factor Engrailed1 (En1) is expressed in the ectoderm and mediates the establishment of retinotectal topography, but its role in eye-specific retinogeniculate segregation and visual function remains unclear. Parvalbumin (PV) neurons, which are widely distributed in the visual pathway, play a crucial role in visual development and function. In this study, we conditionally knocked out En1 gene in PV neurons and found an expansion of the ipsilateral eye projection, while no significant effects were observed in the contralateral eye projection.

View Article and Find Full Text PDF

Purpose: To investigate the potential effects of systemic fingolimod treatment on parameters of the anterior segment of the eye and tear film function tests in patients with multiple sclerosis (MS).

Methods: Forty-eight eyes of 24 individuals who were started on systemic fingolimod treatment for relapsing-remitting MS were prospectively enrolled in this study. Patients underwent examinations immediately before initiation of systemic fingolimod treatment, and at the first and sixth months of treatment.

View Article and Find Full Text PDF

Background: Ocular proton beam therapy (OPT) planning would benefit from an accurate incorporation of fundus photographs, as various intra-ocular structures, such as the fovea, are not visible on conventional modalities such as Magnetic Resonance Imaging (MRI). However, the use of fundus photographs in OPT is limited, as the eye's optics induce a nonuniform patient-specific deformation to the images.

Purpose: To develop a method to accurately map fundus photographs to three-dimensional images.

View Article and Find Full Text PDF

Study of Photoselectivity in Linear Conjugated Chromophores Using the XMS-CASPT2 Method.

ACS Phys Chem Au

November 2024

Condensed Matter Theory Group, Laboratory for Theoretical and Computational Physics, Center for Scientific Computing, Theory, and Data, Paul Scherrer Institute, 5232 Villigen, Switzerland.

Photoisomerization, the structural alteration of molecules upon absorption of light, is crucial for the function of biological chromophores such as retinal in opsins, proteins vital for vision and other light-sensitive processes. The intrinsic selectivity of this isomerization process (i.e.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!