Structures, luminescence, and slow magnetic relaxation of eight 3D lanthanide-organic frameworks.

Dalton Trans

Department of Chemistry, Key Laboratory of Advanced Energy Material Chemistry, MOE, Nankai University, Tianjin 300071, China.

Published: May 2013

Eight three-dimensional lanthanide-organic frameworks: [Ln(BPDC)1.5(DMF)(H2O)2]·2H2O (Ln = Eu (1), Gd (2), Tb (3), Dy (4); BPDC = 4,4'-dicarboxylate-2,2'-dipyridine anion), [Ln(BPDC)(DMF)2(NO3)] (Ln = Eu (5), Gd (6), Tb (7), Dy (8)) were fabricated and structurally characterized. Compounds 1-4 are isostructural, belonging to the triclinic system with space group P1¯, while compounds 6-8 belong to the monoclinic system with space group C2/c. Structural differences between two types of compounds may be caused by different reaction conditions. Magnetic properties of 2-4 and 6-8 have been investigated and only compounds 4 and 8 display significant frequency-dependence, albeit without reaching the characteristic maxima above 2 K, implying slow magnetic relaxation behaviors in 4 and 8. After the application of a DC field, good peak shapes of AC signal were obtained and got the energy barrier for 4, ΔE/kB = 79.80 K and the pre-exponential factor τ0 = 1.28 × 10(-10) s, for 8, ΔE/kB = 38.15 K and τ0 = 2.47 × 10(-9) s. Geometrical differences in the crystal fields of Dy(3+) in 4 and 8 seem to be responsible for the large divergence of their magnetic behaviors. Luminescence analyses were performed on coordination polymers containing Eu(3+), Tb(3+), and Dy(3+), which exhibit the characteristic transitions of corresponding lanthanide ions, and give the lifetime (τ0) of 1, 3, 4, 5, 7 and 8 are 0.56 ms, 0.89 ms, 8.48 μs, 0.60 ms, 0.75 ms and 36.35 μs, respectively.

Download full-text PDF

Source
http://dx.doi.org/10.1039/c3dt32861aDOI Listing

Publication Analysis

Top Keywords

slow magnetic
8
magnetic relaxation
8
lanthanide-organic frameworks
8
system space
8
space group
8
structures luminescence
4
luminescence slow
4
magnetic
4
relaxation lanthanide-organic
4
frameworks three-dimensional
4

Similar Publications

Optic nerve gliomas (ONG) are benign central nervous system tumours and the most common tumours of the optic nerve in children, often occurring before age 20. These tumours are slow-growing and can be treated with surgery and/or radiation therapy. Surgical resection is, however, associated with significant morbidity and loss of vision in the affected eye.

View Article and Find Full Text PDF

For trained individuals such as athletes and musicians, learning often plateaus after extensive training, known as the "ceiling effect." One bottleneck to overcome it is having no prior physical experience with the skill to be learned. Here, we challenge this issue by exposing expert pianists to fast and complex finger movements that cannot be performed voluntarily, using a hand exoskeleton robot that can move individual fingers quickly and independently.

View Article and Find Full Text PDF

Introduction: Chordoma is a rare, slow-growing notochordal neoplasm typical of adults. Less than 5% of the cases occur in children, where they are located at the skull base. Treatment involves surgical resection with or without radiotherapy.

View Article and Find Full Text PDF

Two Co(II) mixed-ligand metal-organic frameworks (MOFs) based on 2-methylimidazole and trimesate were synthesised at room temperature. The structure and properties of the two MOFs, named material Deutsches Elektronen Synchrotron-1 and -2 (mDESY-1 and mDESY-2), were verified by single crystal X-ray diffraction (SCXRD), powder X-ray diffraction (PXRD), SQUID magnetic susceptibility and N adsorption. The structural analysis indicates that mDESY-1 is a 3D ionic framework with 2-methyl-1-imidazol-3-ium counterions residing in its pores, while mDESY-2 is a 2D neutral framework isostructural to ITH-1, with water as a co-crystallising solvent.

View Article and Find Full Text PDF

Convectional drugs have failed to tackle the increasing public health challenge of Cancer and diabetes. Phytochemical conjugated nanoparticles are providing safer therapeutic alternatives to address this global challenge. Nanoparticles of nickel, iron and zinc are especially useful because of their magnetic properties, abilities to prevent the onset or slow the progression of these diseases.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!