Various microfluidic cell culture devices have been developed for in vitro cell studies because of their capabilities to reconstitute in vivo microenvironments. However, controlling flows in microfluidic devices is not straightforward due to the wide varieties of fluidic properties of biological samples. Currently, flow observations mainly depend on optical imaging and macro scale transducers, which usually require sophisticated instrumentation and are difficult to scale up. Without real time monitoring, the control of flows can only rely on theoretical calculations and numerical simulations. Consequently, these devices have difficulty in being broadly exploited in biological research. This paper reports a microfluidic device with embedded pressure sensors constructed using electrofluidic circuits, which are electrical circuits built by fluidic channels filled with ionic liquid. A microfluidic device culturing endothelial cells under various shear stress and hydrostatic pressure combinations is developed to demonstrate this concept. The device combines the concepts of electrofluidic circuits for pressure sensing, and an equivalent circuit model to design the cell culture channels. In the experiments, human umbilical vein endothelial cells (HUVECs) are cultured in the device with a continuous medium perfusion, which provides the combinatory mechanical stimulations, while the hydrostatic pressures are monitored in real time to ensure the desired culture conditions. The experimental results demonstrate the importance of real time pressure monitoring, and how both mechanical stimulations affect the HUVEC culture. This developed microfluidic device is simple, robust, and can be easily scaled up for high-throughput experiments. Furthermore, the device provides a practical platform for an in vitro cell culture under well-controlled and dynamic microenvironments.

Download full-text PDF

Source
http://dx.doi.org/10.1039/c3lc41414kDOI Listing

Publication Analysis

Top Keywords

microfluidic device
16
endothelial cells
12
cell culture
12
real time
12
hydrostatic pressure
8
shear stress
8
vitro cell
8
electrofluidic circuits
8
mechanical stimulations
8
device
7

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!