AI Article Synopsis

  • - Amyotrophic lateral sclerosis (ALS) and frontotemporal dementia (FTD) exist on a disease continuum that shares genetic, pathological, and clinical connections; key factors in this continuum include RNA processing and aggrephagy, which are critical pathways involved in these diseases.
  • - Dysfunction of RNA processing proteins like TAR DNA binding protein and fused in sarcoma (FUS) disrupts cellular RNA regulation, further complicated by the C9orf72 gene's repeat expansions leading to RNA foci that sequester these proteins.
  • - The interaction between RNA dysfunction and aggrephagy points towards new opportunities for drug discovery, as the convergence of pathways associated with ALS and FTD offers potential targets for treatment in both sporadic and

Article Abstract

Amyotrophic lateral sclerosis and frontotemporal dementia form two poles of a genetically, pathologically and clinically-related disease continuum. Analysis of the genes and proteins at the heart of this continuum highlights dysfunction of RNA processing and aggrephagy as crucial disease-associated pathways. TAR DNA binding protein and fused in sarcoma (FUS) are both RNA processing proteins whose dysfunction impacts on global cellular RNA regulation. The recent discovery that expression of repeat expansions in the C9orf72 gene may induce RNA foci that could sequester RNA binding proteins such as TAR DNA binding protein and FUS highlights a further possibly important mechanism of RNA dysfunction in disease. Furthermore, sequestration of key RNA binding proteins may also play an important role in sporadic disease due to the association of TAR DNA binding protein and FUS with stress granules. In a further functional convergence, ubiquilin 2, p62, valosin-containing protein and optineurin are all linked to aggrephagy, a cargo-specific subtype of autophagy important for degrading ubiquitinated target proteins through the lysosome. Notably these two key pathways interact; TAR DNA binding protein and FUS bind and regulate key aggrephagy-related genes whereas dysfunction of aggrephagy leads to cytoplasmic relocalization and aggregation of TAR DNA binding protein. The convergence of amyotrophic lateral sclerosis and frontotemporal dementia linked genes into these two pathways highlights RNA dysfunction and aggrephagy as promising areas for drug discovery. In this review we discuss the importance of each of these pathways and suggest mechanisms by which they may cause both sporadic and familial disease.

Download full-text PDF

Source
http://dx.doi.org/10.1093/brain/awt030DOI Listing

Publication Analysis

Top Keywords

tar dna
20
dna binding
20
binding protein
20
rna dysfunction
12
dysfunction aggrephagy
12
amyotrophic lateral
12
protein fus
12
rna
9
disease continuum
8
lateral sclerosis
8

Similar Publications

The HIV integrase inhibitor, dolutegravir (DTG), in the absence of eliciting integrase (int) resistance, has been reported to select mutations in the virus 3'-polypurine tract (3'-PPT) adjacent to the 3'-LTR U3. An analog of DTG, cabotegravir (CAB), has a high genetic barrier to drug resistance and is used in formulations for treatment and long-acting pre-exposure prophylaxis. We examined whether mutations observed for DTG would emerge in vitro with CAB.

View Article and Find Full Text PDF

The predominant neurodegenerative diseases, Alzheimer's disease, Parkinson's disease, dementia with Lewy Bodies, Huntington's disease, amyotrophic lateral sclerosis, and frontotemporal dementia, are rarely pure diseases but, instead, show a diversity of mixed pathologies. At some level, all of them share a combination of one or more different toxic biomarker proteins: amyloid beta (Aβ), phosphorylated Tau (pTau), alpha-synuclein (αSyn), mutant huntingtin (mHtt), fused in sarcoma, superoxide dismutase 1, and TAR DNA-binding protein 43. These toxic proteins share some common attributes, making them potentially universal and simultaneous targets for therapeutic intervention.

View Article and Find Full Text PDF

Decoding TDP-43: the molecular chameleon of neurodegenerative diseases.

Acta Neuropathol Commun

December 2024

Shenzhen Baoan Traditional Chinese Medicine Hospital, Guangzhou University of Chinese Medicine, Shenzhen, Guang Dong, 518000, China.

TAR DNA-binding protein 43 (TDP-43) has emerged as a critical player in neurodegenerative disorders, with its dysfunction implicated in a wide spectrum of diseases including amyotrophic lateral sclerosis (ALS), frontotemporal lobar degeneration (FTLD), and Alzheimer's disease (AD). This comprehensive review explores the multifaceted roles of TDP-43 in both physiological and pathological contexts. We delve into TDP-43's crucial functions in RNA metabolism, including splicing regulation, mRNA stability, and miRNA biogenesis.

View Article and Find Full Text PDF

Mechanisms of Neurosyphilis-Induced Dementia: Insights into Pathophysiology.

Neurol Int

December 2024

Department of Obstetrics, Gynecology and Reproductive Sciences, School of Medicine, University of Miami Miller, Miami, FL 33136, USA.

Neurosyphilis-induced dementia represents a severe manifestation of tertiary syphilis, characterized by cognitive and neuropsychiatric impairments. This condition arises from the progression of syphilis to the central nervous system, where the spirochete causes damage through invasion, chronic inflammation, and neurodegeneration. The pathophysiology involves chronic inflammatory responses, direct bacterial damage, and proteinopathies.

View Article and Find Full Text PDF

Despite advancements in antiretroviral therapy (ART) that reduces the viral load to undetectable levels and improve CD4 T cell counts, viral eradication has not been achieved due to HIV-1 persistence in resting CD4 T-cells. We, therefore, characterized the gene, which is essential for HIV-1 replication and pathogenesis, from 20 virologically controlled aging individuals with HIV (HIV) on long-term ART and improved CD4 T-cell counts, with a particular focus on older individuals. Peripheral blood mononuclear cell genomic DNA from HIV were used to amplify gene by polymerase chain reaction followed by nucleotide sequencing and analysis.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!