Epigenetic modifications in eukaryotic genomes occur primarily in the form of 5-methylcytosine (5 mC). These modifications are heavily involved in transcriptional repression, gene regulation, development and the progression of diseases including cancer. We report a new single-molecule assay for the detection of DNA methylation using solid-state nanopores. Methylation is detected by selectively labeling methylation sites with MBD1 (MBD-1x) proteins, the complex inducing a 3 fold increase in ionic blockage current relative to unmethylated DNA. Furthermore, the discrimination of methylated and unmethylated DNA is demonstrated in the presence of only a single bound protein, thereby giving a resolution of a single methylated CpG dinucleotide. The extent of methylation of a target molecule could also be coarsely quantified using this novel approach. This nanopore-based methylation sensitive assay circumvents the need for bisulfite conversion, fluorescent labeling, and PCR and could therefore prove very useful in studying the role of epigenetics in human disease.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3593219PMC
http://dx.doi.org/10.1038/srep01389DOI Listing

Publication Analysis

Top Keywords

solid-state nanopores
8
unmethylated dna
8
methylation
6
detection quantification
4
quantification methylation
4
dna
4
methylation dna
4
dna solid-state
4
nanopores epigenetic
4
epigenetic modifications
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!