Detailed measurements of saccadic latency--the time taken to make an eye movement to a suddenly-presented visual target--have proved a valuable source of detailed and quantitative information in a wide range of neurological conditions, as well as shedding light on the mechanisms of decision, currently of intense interest to cognitive neuroscientists. However, there is no doubt that more complex oculomotor tasks, and in particular the antisaccade task in which a participant must make a saccade in the opposite direction to the target, are potentially more sensitive indicators of neurological dysfunction, particularly in neurodegenerative conditions. But two obstacles currently hinder their widespread adoption for this purpose. First, that much of the potential information from antisaccade experiments, notably about latency distribution and amplitude, is typically thrown away. Second, that there is no standardised protocol for carrying out antisaccade experiments, so that results from one laboratory cannot easily be compared with those from another. This paper, the outcome of a recent international meeting of oculomotor scientists and clinicians with an unusually wide experience of such measurements, sets out a proposed protocol for clinical antisaccade trials: its adoption will greatly enhance the clinical and scientific benefits of making these kinds of measurements.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.visres.2013.02.007DOI Listing

Publication Analysis

Top Keywords

antisaccade experiments
8
antisaccade
5
internationally standardised
4
standardised antisaccade
4
antisaccade protocol
4
protocol detailed
4
detailed measurements
4
measurements saccadic
4
saccadic latency--the
4
latency--the time
4

Similar Publications

Quantitative comparison of a mobile, tablet-based eye-tracker and two stationary, video-based eye-trackers.

Behav Res Methods

January 2025

Department Neurophysics, Philipps-Universität Marburg, Fachbereich Physik, AG Neurophysik, Karl-Von-Frisch-Straße 8a, 35043, Marburg, Lahnberge, Germany.

The analysis of eye movements is a noninvasive, reliable and fast method to detect and quantify brain (dys)function. Here, we investigated the performance of two novel eye-trackers-the Thomas Oculus Motus-research mobile (TOM-rm) and the TOM-research stationary (TOM-rs)-and compared them with the performance of a well-established video-based eye-tracker, i.e.

View Article and Find Full Text PDF

Microsaccades belong to the category of fixational micromovements and may be crucial for image stability on the retina. Eye movement paradigms typically require fixational control, but this does not eliminate all oculomotor activity. The antisaccade task requires a planned eye movement in the direction opposite of an onset, allowing separation of planning and execution.

View Article and Find Full Text PDF

Humans are a vision-dominated species; what we perceive depends on where we look. Therefore, eye movements (EMs) are essential to our interactions with the environment, and experimental findings show EMs are affected in neurodegenerative disorders (ND). This could be a reason for some cognitive and movement disorders in ND.

View Article and Find Full Text PDF

Individual differences in preparatory control in the antisaccade task were examined in two experiments via an examination of pupillary responses and fixation stability during the preparatory delay. In both experiments, high attention control individuals (high-antisaccade performers) demonstrated larger pupillary responses during the preparatory delay than low attention control individuals (low-antisaccade performers). These results suggest that variation in antisaccade performance were partially due to individual differences in the ability to ramp up and regulate the intensity of attention allocated to preparatory control processes.

View Article and Find Full Text PDF

On the Effect of Bilateral Eye Movements on Memory Retrieval in Ageing and Dementia.

Brain Sci

September 2022

Psychology Department, Centre for Ageing Research, Lancaster University, Bailrigg, Lancaster LA1 4YF, UK.

It has been reported that performing bilateral eye movements for a short period can lead to an enhancement of memory retrieval and recall (termed the "saccade induced retrieval effect (SIRE)"). The source of this effect has been debated within the literature and the phenomenon has come under scrutiny as the robustness of the effect has recently been questioned. To date investigations of SIRE have largely been restricted to younger adult populations.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!