Identification of growth hormone binding protein in rat serum.

Mol Cell Endocrinol

Rappaport Family Research Institute, Faculty of Medicine, Technion, Haifa, Israel.

Published: April 1990

The present report describes the initial characterization of a specific, high-affinity growth hormone binding protein (GH-BP) in adult male rat serum. GH-BP activity was measured by incubation of rat serum with [125I]hGH and [125I]rGH and separation of bound from free GH by dextran-coated charcoal. [125I]hGH binding to rat serum was dependent on serum concentration and incubation time, equilibrium being reached within 10 min both at 4 and 37 degrees C. Binding was rapidly and completely reversible and specific for somatogenic (but not lactogenic) hormones. Scatchard analysis yielded a linear plot with an affinity (Ka) of 1.51 +/- 0.63 x 10(8) M-1. Preliminary data obtained in various physiological conditions showed that GH-BP activity in adult male rats was 5.95 +/- 0.20%/0.1 ml serum. Significantly higher values were obtained in sera of female (21.66 + 0.79%/0.1 ml serum) and pregnant rats (23.02 +/- 1.15%/0.1 ml serum). A closer analysis of these binding values by Scatchard analysis revealed that the binding capacity in pregnant rats (50.5 +/- 5.8 pmol/0.1 ml serum) was significantly higher than in adult female estrous rats (19.2 +/- 6.5 pmol/0.1 ml serum), both being much higher than in adult male rats (2.5 +/- 0.6 pmol/0.1 ml serum). The GH-BP activity of 10-day-old rats was only approximately 63% of the adult male rat value. The presence of high-affinity GH-specific binding protein in rat serum suggests a probable action in regulation of GH activity. The detailed physiological role of rat serum GH-BP is currently being investigated.

Download full-text PDF

Source
http://dx.doi.org/10.1016/0303-7207(90)90159-6DOI Listing

Publication Analysis

Top Keywords

rat serum
24
adult male
16
serum
13
binding protein
12
serum gh-bp
12
gh-bp activity
12
serum higher
12
+/- pmol/01
12
pmol/01 serum
12
growth hormone
8

Similar Publications

Background: Exposure to ionizing radiation is inevitable due to its extensive use in industrial and medical applications. The search for effective and safe natural therapeutic agents as alternatives to chemical drugs is crucial to mitigate their side effects. This study aimed to evaluate the effects of citicoline as a standalone treatment or in combination with the anti-hepatotoxic drug silymarin in protecting against liver injury caused by γ-radiation in rats.

View Article and Find Full Text PDF

Objectives: Copaiba essential oil (CEO) is obtained through the distillation of copaiba balsam and has been used in the traditional medicine to treat inflammatory conditions. However, the highly lipophilic nature of CEO restricts its pharmaceutical use. This study evaluated the effect of CEO, carried in a self-nanoemulsifying drug delivery system (SNEDDS), on articular and systemic inflammation and liver changes in Holtzman rats with Freund's adjuvant-induced arthritis.

View Article and Find Full Text PDF

possesses promising flavonoid secondary metabolites. However, translation of these compounds into clinical practice for neurological disease treatment is halted as the toxicity and safety profile of the plant extracts are yet to be determined. This study was conducted to assess the acute oral toxicity and subacute neurotoxicity that could be imposed by the flavonoid-enriched fraction (FEF) extracted from leaves, by strictly following the procedures set in Organization for Economic Co-operation and Development (OECD) Guidelines No.

View Article and Find Full Text PDF

The purpose of this trial was to assess the effects of methylphenidate on the kidney tissues and to investigate the protective effect of adenosine triphosphate (ATP) against possible methylphenidate nephrotoxicity in rats. The rats were separated into; healthy control (HG), methylphenidate (MPHG), ATP (ATPG), and ATP+ methylphenidate (AMPG). The ATPG and AMPG groups were administered ATP 4 mg/kg bw/d, and the HG and MPHG groups received distilled water intraperitoneally.

View Article and Find Full Text PDF

Type 2 diabetes mellitus (T2DM) adversely affects various organs, including the brain and its blood barrier. In addition to the brain, hyperglycemia damages the testes. The testes possess blood-tissue barriers that share common characteristics and proteins with the blood-brain barrier (BBB), including breast cancer-resistant protein (BCRP).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!