Lowering the production and accumulation of Aβ has been explored as treatment for Alzheimer's disease (AD), because Aβ is postulated to play an important role in the pathogenesis of AD. 5-HT4 receptors are an interesting drug target in this regard, as their activation might stimulate α-secretase processing, which increases sAPPα and reduces Aβ, at least according to the central dogma in APP processing. Here we describe a novel high-affinity 5-HT4 receptor agonist SSP-002392 that, in cultured human neuroblastoma cells, potently increases the levels of cAMP and sAPPα at 100-fold lower concentrations than the effective concentrations of prucalopride, a known selective 5-HT4 receptor agonist. Chronic administration of this compound in a hAPP/PS1 mouse model of Alzheimer's disease decreased soluble and insoluble Aβ in hippocampus, but the potential mechanisms underlying these observations seem to be complex. We found no evidence for direct α-secretase stimulation in the brain in vivo, but observed decreased APP and BACE-1 expression and elevated astroglia and microglia responses. Taken together these results provide support for a potential disease-modifying aspect when stimulating central 5-HT4 receptors; however, the complexity of the phenomena warrants further research.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.neurobiolaging.2013.01.020 | DOI Listing |
Background: Tau protein tangles have been recently shown to accumulate in multiple brainstem nuclei in pre-cortical Alzheimer's disease (AD) stages. The impact of neurotransmission alterations on brain atrophy and their genetic correlates in AD remain unexplored. Therefore, the aims of this study were: 1) to investigate associations between grey matter (GM) loss across the AD continuum and the distribution of multiple neurotransmitter receptors/transporters; 2) to investigate the impact of polygenic risk scores for AD (PRSs) on such associations.
View Article and Find Full Text PDFArch Razi Inst
June 2024
Medical Plants Research Center, Basic Health Sciences Institute, Shahrekord University of Medical Sciences, Shahrekord, Iran.
In the present study, the mechanisms involved in scopolamine-induced memory impairment have been investigated. The molecular events that take place during memory mostly include mechanisms that are seen in the acquisition phase. Results showed that one of the mechanisms of memory destruction caused by scopolamine, in addition to weakening the cholinergic system, is the indirect effect of scopolamine on other neurotransmitter systems, including the glutamatergic system.
View Article and Find Full Text PDFSci Rep
December 2024
Department of Management, Bar-Ilan University, Ramat Gan, 5290002, Israel.
Int J Med Sci
December 2024
Department of Longevity and Biofunctional Medicine, School of Korean Medicine, Pusan National University, Yangsan 50612, Republic of Korea.
J Psychiatr Res
November 2024
Neurobiology Research Unit and BrainDrugs, Copenhagen University Hospital Rigshospitalet, Copenhagen, Denmark; Mental Health Center Copenhagen, Copenhagen University Hospital - Mental Health Services CPH, Copenhagen, Denmark; Department of Clinical Medicine, University of Copenhagen, Copenhagen, Denmark.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!