AI Article Synopsis

  • This study evaluates patient setup variations during radiation therapy for head-and-neck cancer using different CT-based image guidance systems.
  • A total of 3302 CT scans from 117 patients were analyzed to measure daily displacements and calculate target volume margins.
  • Results showed varying degrees of interfraction errors and margin sizes across the different imaging modalities, with some patient characteristics found to influence the setup variations.

Article Abstract

Purpose: Various image guidance systems are commonly used in conjunction with intensity modulated radiation therapy (IMRT) in head-and-neck cancer irradiation. The purpose of this study was to assess interfraction patient setup variations for 3 computed tomography (CT)-based on-board image guided radiation therapy (IGRT) modalities.

Methods And Materials: A total of 3302 CT scans for 117 patients, including 53 patients receiving megavoltage cone-beam CT (MVCBCT), 29 receiving kilovoltage cone-beam CT (KVCBCT), and 35 receiving megavoltage fan-beam CT (MVFBCT), were retrospectively analyzed. The daily variations in the mediolateral (ML), craniocaudal (CC), and anteroposterior (AP) dimensions were measured. The clinical target volume-to-planned target volume (CTV-to-PTV) margins were calculated using 2.5Σ + 0.7 σ, where Σ and σ were systematic and random positioning errors, respectively. Various patient characteristics for the MVCBCT group, including weight, weight loss, tumor location, and initial body mass index, were analyzed to determine their possible correlation with daily patient setup.

Results: The average interfraction displacements (± standard deviation) in the ML, CC, and AP directions were 0.5 ± 1.5, -0.3 ± 2.0, and 0.3 ± 1.7 mm (KVCBCT); 0.2 ± 1.9, -0.2 ± 2.4, and 0.0 ± 1.7 mm (MVFBCT); and 0.0 ± 1.8, 0.5 ± 1.7, and 0.8 ± 3.0 mm (MVCBCT). The day-to-day random errors for KVCBCT, MVFBCT, and MVCBCT were 1.4-1.6, 1.7, and 2.0-2.1 mm. The interobserver variations were 0.8, 1.1, and 0.7 mm (MVCBCT); 0.5, 0.4, and 0.8 mm (MVFBCT); and 0.5, 0.4, and 0.6 mm (KVCBCT) in the ML, CC, and AP directions, respectively. The maximal calculated uniform CTV-to-PTV margins were 5.6, 6.9, and 8.9 mm for KVCBCT, MVFBCT, and MVCBCT, respectively. For the evaluated patient characteristics, the calculated margins for different patient parameters appeared to differ; analysis of variance (ANOVA) and/or t test analysis found no statistically significant setup difference in any direction.

Conclusions: Daily random setup errors and CTV-to-PTV margins for treatment of head-and-neck cancer were affected by imaging quality. Our data indicated that larger margins were associated with MVFBCT and MVCBCT, compared with smaller margins for KVCBCT. IGRT modalities with better image quality are encouraged in clinical practice.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.ijrobp.2013.01.022DOI Listing

Publication Analysis

Top Keywords

mvfbct mvcbct
16
head-and-neck cancer
12
radiation therapy
12
ctv-to-ptv margins
12
interfraction patient
8
patient setup
8
intensity modulated
8
modulated radiation
8
image guidance
8
receiving megavoltage
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!