Species of frogs that develop directly have removed the tadpole from their ontogeny and form adult structures precociously. To see whether cell cycle regulators could be involved in this altered embryogenesis, we examined the expression of ccnd1, ccnd2, and mycn in embryos of the direct developing frog, Eleutherodactylus coqui. Notable differences compared to embryos of Xenopus laevis, a species with a tadpole, included prominent expression of ccnd2 in the midbrain and ccnd1 in the mandibular neural crest. The former may contribute to the precocious appearance of the adult-type visual system and the latter to the adult-type jaw. Large domains of ccnd2 and mycn presage the early appearance of limb buds, and ccnd1 and mycn are implicated in digit development.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3657300 | PMC |
http://dx.doi.org/10.1016/j.gep.2013.02.005 | DOI Listing |
Am J Reprod Immunol
January 2025
State Key Laboratory of Reproductive Medicine and Offspring Health, Center for Reproductive Medicine, Institute of Women, Children and Reproductive Health, Shandong University, Jinan, Shandong, China.
Background: Alterations in lipid metabolism were reported to impact human fertility; however, there is limited evidence on the association of lipid metabolism with embryo implantation as well as the etiology of recurrent implantation failure (RIF), especially regarding arachidonic acid metabolism.
Methods: Experimental verification research (16 RIF patients and 30 control patients) based on GEO database analysis (24 RIF patients and 24 control patients). The methods in bioinformatics included differential gene screening, functional enrichment analysis, protein-protein interaction network, cluster analysis, weighted gene co-expression network analysis, and so forth.
Biophys Physicobiol
September 2024
Department of Cell Biology, The University of Tokyo, Bunkyo-ku, Tokyo 113-0033, Japan.
Visceral organs in vertebrates are arranged with left-right asymmetry; for example, the heart is located on the left side of the body. Cilia at the node of mouse early embryos play an essential role in determining this left-right asymmetry. Using information from the anteroposterior axis, motile cilia at the central region of the node generate leftward nodal flow.
View Article and Find Full Text PDFEnviron Res
January 2025
School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Ribeirão Preto, São Paulo, Brazil; National Institute of Science and Technology for Detection, Toxicological Evaluation and Removal of Micropollutants and Radioactive Substances (INCT-DATREM). Electronic address:
Diisopentyl phthalate (DiPP) is present in many consumer goods, but can be absorbed into the human body, and can disrupt the endocrine system affecting reproductive health and fetal development. Studies revealed that biological samples of pregnant women in Brazil contained DiPP, raising even more the concerns about its usage. This study investigated how DiPP concentrations (12.
View Article and Find Full Text PDFDev Cell
January 2025
King's College London, Centre for Gene Therapy and Regenerative Medicine, School of Basic & Medical Biosciences, Faculty of Life Sciences and Medicine, London, UK; King's College London, Guy's Hospital Assisted Conception Unit, Department of Women and Children's Health, School of Life Course and Population Sciences, Faculty of Life Sciences and Medicine, London, UK. Electronic address:
Female primordial germ cells (PGCs) undergo X chromosome reactivation (XCR) during genome-wide reprogramming. XCR kinetics and dynamics are poorly understood at a molecular level. Here, we apply single-cell RNA sequencing and chromatin profiling on germ cells from F mouse embryos, performing a precise appraisal of XCR spanning from migratory-stage PGCs to gonadal germ cells.
View Article and Find Full Text PDFInt J Mol Sci
January 2025
Department of Clinical Biochemistry, University Hospital Southampton NHS Foundation Trust, Southampton General Hospital, Southampton SO16 6YD, UK.
From fertilisation to delivery, calcium must be transported into and within the foetoplacental unit for intracellular signalling. This requires very rapid, precisely located Ca transfers. In addition, from around the eighth week of gestation, increasing amounts of calcium must be routed directly from maternal blood to the foetus for bone mineralisation through a flow-through system, which does not impact the intracellular Ca concentration.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!