Increased brain infiltration of polymorphonuclear neutrophils (PMNs) occurs early after stroke and is important in eliciting brain inflammatory response during stroke recovery. In order to understand the molecular mechanism of PMN entry, we investigated the expression and requirement for Slit1, a chemorepulsive guidance cue, and its cognate receptor, Robo1, in a long-term recovery mouse model of cerebral ischemia. The expression levels of Robo1 were significantly decreased bilaterally at 24h following reperfusion. Robo1 expression levels remained suppressed in the ipsilateral cortex until 28d post MCAO-reperfusion, while the levels of Robo1 in the contralateral cortex recovered to the level of sham-operated mouse by 7d reperfusion. Circulating PMNs express high levels of Slit1, but not Robo1. Influx of PMNs into the ischemic core area occurred early (24h) after cerebral ischemia, when endothelial Robo1 expression was significantly reduced in the ischemic brain, indicating that Robo1 may form a repulsive barrier to PMN entry into the brain parenchyma. Indeed, blocking Slit1 on PMNs in a transwell migration assay in combination with an antibody blocking of Robo1 on human umbilical vein endothelial cells (HUVEC) significantly increased PMN transmigration during oxygen glucose deprivation, an in vitro model of ischemia. Collectively, in the normal brain, the presence of Slit1 on PMNs, and Robo1 on cerebral endothelial cells, generated a repulsive force to prevent the infiltration of PMNs into the brain. During stroke recovery, a transient reduction in Robo1 expression on the cerebral endothelial cells allowed the uncontrolled infiltration of Slit1-expressing PMNs into the brain causing inflammatory reactions.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.nbd.2013.02.014DOI Listing

Publication Analysis

Top Keywords

cerebral endothelial
12
stroke recovery
12
robo1 expression
12
endothelial cells
12
robo1
11
brain
8
brain infiltration
8
infiltration polymorphonuclear
8
polymorphonuclear neutrophils
8
pmn entry
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!