Drug-induced blockade of the human ether-a-go-go-related gene K(+) channel (hERG) represents one of the major antitarget concerns in pharmaceutical industry. SAR studies of this ion channel have shed light on the structural requirements for hERG interaction but most importantly may reveal drug design principles to reduce hERG affinity. In the present study, a novel library of neutral and positively charged heteroaromatic derivatives of the class III antiarrhythmic agent dofetilide was synthesized and assessed for hERG affinity in radioligand binding and manual patch clamp assays. Structural modifications of the pyridine moiety, side chain, and peripheral aromatic moieties were evaluated, thereby revealing approaches for reducing hERG binding affinity. In particular, we found that the extra rigidity imposed close to the positively charged pyridine moiety can be very efficient in decreasing hERG affinity.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/jm301564f | DOI Listing |
BMC Chem
January 2025
Energy Systems Engineering Department, Engineering Faculty, Adana Alparslan Türkeş Science and Technology University, 01250, Adana, Türkiye.
Although the antiallergic properties of compounds such as CAPE, Melatonin, Curcumin, and Vitamin C have been poorly discussed by experimental studies, the antiallergic properties of these famous molecules have never been discussed with calculations. The histamine-1 receptor (H1R) belongs to the family of rhodopsin-like G-protein-coupled receptors expressed in cells that mediate allergies and other pathophysiological diseases. In this study, pharmacological activities of FDA-approved second generation H1 antihistamines (Levocetirizine, desloratadine and fexofenadine) and molecules such as CAPE, Melatonin, Curcumin, Vitamin C, ADMET (Absorption, Distribution, Metabolism, Excretion, Toxicity) profiles, density functional theory (DFT), molecular docking, biological targets and activities were compared by calculating.
View Article and Find Full Text PDFComput Methods Programs Biomed
December 2024
Centro de Investigación e Innovación en Bioingeniería (Ci2B), Universitat Politècnica de València, Valencia, Spain. Electronic address:
Background And Objective: In silico human models are being used more and more to predict the potential proarrhythmic risk of compounds. It has been shown that incorporation of the dynamics of drug-hERG channel interactions can have an important impact on the action potential duration (APD) at normal heart rates. Our aim is to investigate the relevance of drug dynamics on other important biomarkers of proarrhythmic risk.
View Article and Find Full Text PDFInt J Mol Sci
December 2024
Department of Immunology, Faculty of Health Sciences, University of Pretoria, Pretoria 0001, South Africa.
Multidrug-resistant tuberculosis (MDR-TB) patients are treated with a standardised, short World Health Organization (WHO) regimen which includes clofazimine (CFZ) and bedaquiline (BDQ) antibiotics. These two antibiotics lead to the development of QT prolongation in patients, inhibiting potassium (K) uptake by targeting the voltage-gated K (Kv)11.1 (hERG) channel of the cardiomyocytes (CMs).
View Article and Find Full Text PDFJ Biomol Struct Dyn
December 2024
Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran.
In traditional medicine, potential anti-inflammatory and pain-relieving activity of and has been emphasized. In this study, we explored binding affinity of 36 bioactive compounds from these plants to cyclooxygenase-2 (COX-2) receptor using docking method. Six compounds namely, beta carotene, lycopene, lutein, momordicoside, rutin and azadirachtin showed excellent binding affinities (-10.
View Article and Find Full Text PDFSci Rep
November 2024
Centre de Recherche en Cancérologie de Marseille (CRCM), INSERM U1068, CNRS UMR7258, Aix Marseille Université and Institut Paoli Calmettes, Parc Scientifique etTechnologique de Luminy, Equipe labéliséeLigue Nationale contre le cancer, 163 Avenue de Luminy, 13288, Marseille, France.
Pancreatic cancer is highly lethal and has limited treatment options available. Our team had previously developed ZZW-115, a promising drug candidate that targets the nuclear protein 1 (NUPR1), which is involved in pancreatic cancer development and progression. However, clinical translation of ZZW-115 was hindered due to potential cardiotoxicity caused by its interaction with the human Ether-à-go-go-Related Gene (hERG) potassium channel.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!