We report the seeded synthesis of gold nanoparticles (GNPs) via the reduction of HAuCl4 by (L31 and F68) triblock copolymer (TBP) mixtures. In the present study, we focused on [TBP]/[Au(III)] ratios of 1-5 (≈1 mM HAuCl4) and seed sizes ~20 nm. Under these conditions, the GNP growth rate is dominated by both the TBP and seed concentrations. With seeding, the final GNP size distributions are bimodal. Increasing the seed concentration (up to ~0.1 nM) decreases the mean particle sizes 10-fold, from ~1000 to 100 nm. The particles in the bimodal distribution are formed by the competitive direct growth in solution and the aggregative growth on the seeds. By monitoring kinetics of GNP growth, we propose that (1) the surface of the GNP seeds embedded in the TBP cavities form catalytic centers for GNP growth and (2) large GNPs are formed by the aggregation of GNP seeds in an autocatalytic growth process.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4440571 | PMC |
http://dx.doi.org/10.1021/la400387h | DOI Listing |
Polymers (Basel)
December 2024
Department of Tissue Engineering and Regenerative Medicine, Faculty of Medicine, Universiti Kebangsaan Malaysia, Cheras, Kuala Lumpur 56000, Malaysia.
Tissue engineering and regenerative medicine have made significant breakthroughs in creating complex three-dimensional (3D) constructs that mimic human tissues. This progress is largely driven by the development of hydrogels, which enable the precise arrangement of biomaterials and cells to form structures resembling native tissues. Gelatin-based bioinks are widely used in wound healing due to their excellent biocompatibility, biodegradability, non-toxicity, and ability to accelerate extracellular matrix formation.
View Article and Find Full Text PDFPolymers (Basel)
December 2024
Department of Mechanical and Mechatronic Engineering, National Taiwan Ocean University, Keelung 202301, Taiwan.
The effect of dispersing multiwalled carbon nanotubes (MWCNTs) and graphene nanoplatelets (GNPs) in the matrix on the low-velocity impact resistance and post-impact residual tensile strength of the carbon fiber reinforced epoxy composite laminates has been experimentally analyzed in this study. The composite specimens with the matrix reinforced by different nanoparticle types and various nanoparticle concentrations (0.1, 0.
View Article and Find Full Text PDFGels
November 2024
Biomedical Engineering Department, Saint Louis University, Saint Louis, MO 63103, USA.
Biological agents such as extracellular vesicles (EVs) and growth factors, when administered in vivo, often face rapid clearance, limiting their therapeutic potential. To address this challenge and enhance their efficacy, we propose the electrostatic conjugation and sequestration of these agents into gelatin-based biomaterials. In this study, gelatin nanoparticles (GNPs) were synthesized via the nanoprecipitation method, with adjustments to the pH of the gelatin solution (4.
View Article and Find Full Text PDFPlant Cell
December 2024
State Key Laboratory of Crop Gene Resources and Breeding, Chinese Academy of Agricultural Sciences, Institute of Crop Sciences, Beijing 100081, China.
The phytohormone cytokinin (CK) positively regulates the activity of the inflorescence meristem (IM). Cytokinin oxidase 2/Grain number 1a (OsCKX2/Gn1a)-mediated degradation of CK in rice (Oryza sativa L.) negatively regulates panicle grain number, whereas DENSE AND ERECT PANICLE 1 (DEP1) positively regulates grain number per panicle (GNP).
View Article and Find Full Text PDFNanoscale Adv
November 2024
Centre for Nanobiotechnology, VIT University Vellore 632 014 India +91-416-2243092 +91-416-220-2879.
Liver cancer, with its robust metastatic propensity, imposes a substantial global health burden of around 800 000 new cases annually. Mutations in the Wnt/β-catenin pathway genes are common in liver cancer, driving over 80% of cases. Targeting this pathway could potentially lead to better treatments.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!