Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
We have recently reported a series of tetrahydroquinazoline (THQ) mTOR inhibitors that produced a clinical candidate 1 (GDC-0349). Through insightful design, we hoped to discover and synthesize a new series of small molecule inhibitors that could attenuate CYP3A4 time-dependent inhibition commonly observed with the THQ scaffold, maintain or improve aqueous solubility and oral absorption, reduce free drug clearance, and selectively increase mTOR potency. Through key in vitro and in vivo studies, we demonstrate that a pyrimidoaminotropane based core was able to address each of these goals. This effort culminated in the discovery of 20 (GNE-555), a highly potent, selective, metabolically stable, and efficacious mTOR inhibitor.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/jm400194n | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!