Atomic resolution imaging of currents in nanoscopic quantum networks via scanning tunneling microscopy.

Phys Rev Lett

Department of Physics and James Franck Institute, University of Chicago, Chicago, Illinois 60637, USA.

Published: February 2013

We propose a new method for atomic-scale imaging of spatial current patterns in nanoscopic quantum networks by using scanning tunneling microscopy (STM). By measuring the current flowing from the STM tip into one of the leads attached to the network as a function of tip position, one obtains an atomically resolved spatial image of "current riverbeds" whose spatial structure reflects the coherent flow of electrons out of equilibrium. We show that this method can be successfully applied in a variety of network topologies and is robust against dephasing effects.

Download full-text PDF

Source
http://dx.doi.org/10.1103/PhysRevLett.110.086802DOI Listing

Publication Analysis

Top Keywords

nanoscopic quantum
8
quantum networks
8
networks scanning
8
scanning tunneling
8
tunneling microscopy
8
atomic resolution
4
resolution imaging
4
imaging currents
4
currents nanoscopic
4
microscopy propose
4

Similar Publications

Carbon nanomaterials (CNMs), such as carbon nanotubes (CNTs), graphene quantum dots (GQDs), and carbon quantum dots (CQDs), are prevalent in biological systems and have been widely utilized in applications like environmental sensing and biomedical fields. While their presence in human matrices is projected to increase, the interfacial interactions between carbon-based nanoscopic platforms and biomolecular systems continue to remain underexplored. In this study, we investigated the effect of gelatin-sourced CQDs on the globular milk protein beta-lactoglobulin (BLG).

View Article and Find Full Text PDF

Photosensitization has a wide range of applications in vastly distant fields. Three key components must be present at the same time to trigger the related photodynamic effect: light, the photosensitizer (PS) and oxygen. Irradiating the sensitizer leads to the formation of reactive oxygen species (ROS).

View Article and Find Full Text PDF

Spin orbit coupling effect on coherent transport properties of graphene nanoscopic rings in external magnetic field.

Sci Rep

December 2024

Faculty of Mathematics and Computer Science, University of Warmia and Mazury in Olsztyn, ul. Słoneczna 54, 10-710, Olsztyn, Poland.

A theoretical investigation of spin-orbit coupling effect on magnetotransport of a monolayer graphene system having the geometry of Aharonov-Bohm interferometer is presented. The spin-orbit interaction is considered in the form of Rashba spin-orbit (RSO) coupling. The problem is studied within atomistic tight-binding approximation in combination with non-equilibrium Green's functions formalism.

View Article and Find Full Text PDF

Alkali cation-π interactions in aqueous systems, modulating supramolecular stereoisomerism of nanoscopic metal-organic capsules.

Nat Commun

November 2024

School of Chemistry & SFI AMBER Research Centre, Trinity College Dublin, The University of Dublin, College Green, Dublin, D02 PN40, Ireland.

Contrary to common chemical intuition, cation-π interactions can persist in polar, aqueous reaction solutions, rather than in dry non-coordinative solvent systems. This account highlights how alkali ion-π interactions impart distinctive structure-influencing supramolecular forces that can be exploited in the preparation of nanoscopic metal-organic capsules. The incorporation of alkali ions from polar solutions into molecular pockets promotes the assembly of otherwise inaccessible capsular entities whose structures are distinctive to those of common polyoxovanadate clusters in which {V=O} moieties usually point radially to the outside, shielding the molecular entities.

View Article and Find Full Text PDF

Identifying winner-takes-all emergence in random nanowire networks: an inverse problem.

Phys Chem Chem Phys

November 2024

Department of Physics and Astronomy, University of Calgary, 2500 University Drive NW, Calgary, Alberta T2N 1N4, Canada.

Random nanowire networks (NWNs) are interconnects that enable the integration of nanoscopic building blocks (the nanowires) in a disorganized fashion, enabling the study of complex emergent phenomena in nanomaterials and built-in fault-tolerant processing functionalities; the latter can lead to advances in large-scale electronic devices that can be fabricated with no particular array/grid high-precision pattern. However, when various nanowires are assembled to form an intricate network, their individual features are somehow lost in the complex NWN frame, in line with the complexity hallmark "the whole differs from the sum of the parts". Individual nanowire materials and geometrical features can only be inferred indirectly by attempting to extract information about their initial conditions from a response function measurement.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!