Mesoscopic entanglement induced by spontaneous emission in solid-state quantum optics.

Phys Rev Lett

Departamento de Física Teórica de la Materia Condensada, Universidad Autonoma de Madrid, 28040 Madrid, Spain.

Published: February 2013

Implementations of solid-state quantum optics provide us with devices where qubits are placed at fixed positions in photonic or plasmonic one-dimensional waveguides. We show that solely by controlling the position of the qubits and with the help of a coherent driving, collective spontaneous decay may be engineered to yield an entangled mesoscopic steady state. Our scheme relies on the realization of pure superradiant Dicke models by a destructive interference that cancels dipole-dipole interactions in one dimension.

Download full-text PDF

Source
http://dx.doi.org/10.1103/PhysRevLett.110.080502DOI Listing

Publication Analysis

Top Keywords

solid-state quantum
8
quantum optics
8
mesoscopic entanglement
4
entanglement induced
4
induced spontaneous
4
spontaneous emission
4
emission solid-state
4
optics implementations
4
implementations solid-state
4
optics provide
4

Similar Publications

Tunable polarization entangled photon-pair source in rhombohedral boron nitride.

Sci Adv

January 2025

National Laboratory of Solid State Microstructures and School of Physics, Nanjing University, Nanjing 210093, China.

Entangled photon-pair sources are pivotal in various quantum applications. Miniaturizing the quantum devices to meet the requirement in limited space applications drives the search for ultracompact entangled photon-pair sources. The rise of two-dimensional (2D) semiconductors has been demonstrated as ultracompact entangled photon-pair sources.

View Article and Find Full Text PDF

Spin Hall nano-oscillators convert DC to magnetic auto-oscillations in the microwave regime. Current research on these devices is dedicated to creating next-generation energy-efficient hardware for communication technologies. Despite intensive research on magnetic auto-oscillations within the past decade, the nanoscale mapping of those dynamics remained a challenge.

View Article and Find Full Text PDF

Controlled Introduction of sp3 Quantum Defects in Fluorescent Carbon Nanotubes by Mechanochemistry.

Angew Chem Int Ed Engl

January 2025

Ruhr-Universität Bochum: Ruhr-Universitat Bochum, Inorganic Chemistry, Universitaetsstrasse 150, 44801, Bochum, GERMANY.

Precise control over low-dimensional materials holds an immense potential for their applications in sensing, imaging and information processing. The controlled introduction of sp3 quantum defects (color centers) can be used to tailor the optoelectronic properties of single-walled carbon nanotubes (SWCNTs) in the tissue transparency (> 800 nm) and the telecommunication window. However, an uncontrolled functionalization of SWCNTs with defects leads to a loss of the NIR fluorescence.

View Article and Find Full Text PDF

New hybrids were synthesised by linking carboranes and siloles, both of which are known as aggregation-induced emission active units. Although most of the newly synthesised systems do not display notable quantum yield either in solution or in the aggregated state, they emit strongly in the solid-state, and a quantum yield of up to 100% can be achieved. The tailorable quantum yield can be attributed to the packing of the molecules in the crystal lattice ruled by the carborane and phenyl moieties according to the SC-XRD data.

View Article and Find Full Text PDF

Short-Wave Infrared Optoelectronics with Colloidal CdHgSe/ZnCdS Core/Shell Nanoplatelets.

ACS Photonics

January 2025

Photonic Nanomaterials, Istituto Italiano di Tecnologia, 16163 Genova, Italy.

Colloidal semiconductor nanocrystals (NCs) are an efficient and cost-effective class of nanomaterials for optoelectronic applications. Advancements in NC-based optoelectronic devices have resulted from progress in synthetic chemistry, adjustable surface properties, and optimized device architectures. Semiconductor nanoplatelets (NPLs) stand out among other NCs due to their precise growth control, yielding uniform thickness with submonolayer roughness.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!