We evaluated the robust, lightweight DiSCmini (DM) aerosol monitor for its ability to measure the concentration and mean diameter of submicrometer aerosols. Tests were conducted with monodispersed and polydispersed aerosols composed of two particle types (sodium chloride [NaCl] and spark-generated metal particles, which simulate particles found in welding fume) at three different steady-state concentration ranges (Low, <10(3); Medium, 10(3)-10(4); and High, >10(4) particles/cm(3)). Particle number concentration, lung deposited surface area (LDSA) concentration, and mean size measured with the DM were compared with those measured with reference instruments, a scanning mobility particle sizer (SMPS), and a handheld condensation particle counter (CPC). Particle number concentrations measured with the DM were within 16% of those measured by the CPC for polydispersed aerosols. Poorer agreement was observed for monodispersed aerosols (±35% for most tests and +101% for 300-nm NaCl). LDSA concentrations measured by the DM were 96% to 155% of those estimated with the SMPS. The geometric mean diameters measured with the DM were within 30% of those measured with the SMPS for monodispersed aerosols and within 25% for polydispersed aerosols (except for the case when the aerosol contained a substantial number of particles larger than 300 nm). The accuracy of the DM is reasonable for particles smaller than 300 nm, but caution should be exercised when particles larger than 300 nm are present. [Supplementary materials are available for this article. Go to the publisher's online edition of the Journal of Occupational and Environmental Hygiene for the following free supplemental resources: manufacturer-reported capabilities of instruments used, and information from the SMPS measurements for polydispersed test particles.].
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4773198 | PMC |
http://dx.doi.org/10.1080/15459624.2013.769077 | DOI Listing |
Int J Pharm
January 2025
School of Mechanical and Mechatronic Engineering, University of Technology Sydney (UTS), 15 Broadway, Ultimo, New South Wales 2007, Australia. Electronic address:
Nanocarrier-based dry powders for lung disease treatment are crucial, with in vitro and in silico research being pivotal to their success. This study introduces a method for creating Tiotropium-bromide liposomal inhalation dry powder, termed "Trojan-particles," utilizing thin-film hydration and spray-drying with lactose-arginine carriers. Encapsulating tiotropium-bromide in nanoliposomes enhances lung treatment via liposomes' unique features.
View Article and Find Full Text PDFPharmaceutics
December 2024
Department of Pharmaceutical Sciences, College of Pharmacy, QU Health Sector, Qatar University, Doha 2713, Qatar.
Background/objectives: This study aimed to fabricate, optimize, and characterize nanostructured lipid carriers (NLCs) loaded with trans-resveratrol (TRES) as an anti-cancer drug for pulmonary drug delivery using medical nebulizers.
Methods: Novel TRES-NLC formulations (F1-F24) were prepared via hot, high-pressure homogenization. One solid lipid (Dynasan 116) was combined with four liquid lipids (Capryol 90, Lauroglycol 90, Miglyol 810, and Tributyrin) in three different ratios (10:90, 50:50, and 90:10 /), with a surfactant (Tween 80) in two different concentrations (0.
J Colloid Interface Sci
March 2025
School of Chemistry, University of Bristol, Bristol BS8 1TS, UK. Electronic address:
Hypothesis: Supra-particle formation by evaporation of an aqueous aerosol droplet containing nano-colloidal particles is challenging to investigate but has significant applications. We hypothesise that the Peclet number, Pe, which compares the effectiveness of evaporation-induced advection to that of colloidal diffusion, is critical in determining supra-particle morphology and can be used to predict the dried morphology for droplet containing polydisperse nanoparticles.
Experiments: Sterically-stabilized diblock copolymer nanoparticles were prepared via polymerization-induced self-assembly (PISA).
J Environ Radioact
December 2024
China Academy of Engineering Physics, Mian Yang, 621999, Sichuan, China. Electronic address:
Characterizing radioactive aerosol particles released from actinide metals on fires represents a pivotal process in nuclear emergency response. However, the precise characterization of these particles and the deep understanding of their formation mechanism remain a daunting challenge due to the lack of in-situ measurement techniques. We presented the first real-time investigation of respirable particles with the size ranging from 2 nm to 10 μm, emitted from the combustion of cerium metal (CM) as surrogate for actinide counterparts.
View Article and Find Full Text PDFAnn Work Expo Health
January 2025
Health and Safety Executive (HSE) Science Division, Harpur Hill, Buxton SK 17 9JN, Buxton, United Kingdom.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!