Anodal transcranial direct current stimulation increases brain intracellular pH and modulates bioenergetics.

Int J Neuropsychopharmacol

Neuroscience Research Australia, Randwick, NSW, Australia.

Published: September 2013

Transcranial direct current stimulation is an emerging treatment for brain disorders but its mode of action is not well understood. We applied 10 min 1 mA anodal transcranial direct current stimulation (tDCS) inside the bore of a 3 T MRI scanner to the left dorsolateral prefrontal cortex of 13 healthy volunteers (aged 19-28 yr) in a blinded, sham-controlled, cross-over design. Brain bioenergetics were measured from the left temporo-frontal region using 31P magnetic resonance spectroscopy before, during and for 20 min following tDCS. Brain pH rose during tDCS and remained elevated afterwards. Phosphomonoesters were significantly decreased while inorganic phosphate (Pi) also fell. Partial-least squares discriminant analysis of the data revealed two significantly different subject groups: one where phosphocreatine (PCr), ATP and Pi fell along with a larger increase in pH and one where PCr and ATP increased along with a smaller increase in pH and a slower and more sustained decrease in Pi. Group membership was predicted by baseline pH and ATP. We interpreted the effects of tDCS as driving two biochemical processes: cellular consumption of ATP causing hydrolysis of PCr via the creatine kinase reaction driving the increase in pH; synthesis of ATP and PCr by mitochondria with concomitant drop in Pi and phosphomonoester levels.

Download full-text PDF

Source
http://dx.doi.org/10.1017/S1461145713000084DOI Listing

Publication Analysis

Top Keywords

transcranial direct
12
direct current
12
current stimulation
12
anodal transcranial
8
pcr atp
8
atp
5
stimulation increases
4
brain
4
increases brain
4
brain intracellular
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!