Structural principles of RNA catalysis in a 2'-5' lariat-forming ribozyme.

J Am Chem Soc

Structural and Computational Biology Unit, EMBL, Meyerhofstraße 1, D-69117 Heidelberg, Germany.

Published: March 2013

RNA-catalyzed lariat formation is present in both eukaryotes and prokaryotes. To date we lack structural insights into the catalytic mechanism of lariat-forming ribozymes. Here, we study an artificial 2'-5' AG1 lariat-forming ribozyme that shares the sequence specificity of lariat formation with the pre-mRNA splicing reaction. Using NMR, we solve the structure of the inactive state of the ribozyme in the absence of magnesium. The reaction center 5'-guanosine appears to be part of a helix with an exceptionally widened major groove, while the lariat-forming A48 is looped out at the apex of a pseudoknot. The model of the active state built by mutational analysis, molecular modeling, and small-angle X-ray scattering suggests that A48 is recognized by a conserved adenosine, juxtaposed to the 5'-guanosine in one base-pair step distance, while the G1-N7 coordinates a magnesium ion essential for the activation of the nucleophile. Our findings offer implications for lariat formation in RNA enzymes including the mechanism of the recognition of the branch-site adenosine.

Download full-text PDF

Source
http://dx.doi.org/10.1021/ja311868tDOI Listing

Publication Analysis

Top Keywords

lariat formation
12
lariat-forming ribozyme
8
structural principles
4
principles rna
4
rna catalysis
4
catalysis 2'-5'
4
lariat-forming
4
2'-5' lariat-forming
4
ribozyme rna-catalyzed
4
rna-catalyzed lariat
4

Similar Publications

Human DBR1 deficiency impairs stress granule-dependent PKR antiviral immunity.

J Exp Med

January 2025

Division Life Sciences and Medicine, Department of General Surgery, The First Affiliated Hospital of USTC, Key Laboratory of Immune Response and Immunotherapy, Center Advanced Interdisciplinary Science and Biomedicine IHM, University of Science and Technology of China, Hefei, China.

The molecular mechanism by which inborn errors of the human RNA lariat-debranching enzyme 1 (DBR1) underlie brainstem viral encephalitis is unknown. We show here that the accumulation of RNA lariats in human DBR1-deficient cells interferes with stress granule (SG) assembly, promoting the proteasome degradation of at least G3BP1 and G3BP2, two key components of SGs. In turn, impaired assembly of SGs, which normally recruit PKR, impairs PKR activation and activity against viruses, including HSV-1.

View Article and Find Full Text PDF

Sequestration of DBR1 to stress granules promotes lariat intronic RNAs accumulation for heat-stress tolerance.

Nat Commun

September 2024

The Zhongzhou Laboratory for Integrative Biology, State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life Sciences, Henan University, Kaifeng, 475004, China.

Heat stress (HS) poses a significant challenge to plant survival, necessitating sophisticated molecular mechanisms to maintain cellular homeostasis. Here, we identify SICKLE (SIC) as a key modulator of HS responses in Arabidopsis (Arabidopsis thaliana). SIC is required for the sequestration of RNA DEBRANCHING ENZYME 1 (DBR1), a rate-limiting enzyme of lariat intronic RNA (lariRNA) decay, into stress granules (SGs).

View Article and Find Full Text PDF

Interactions between proteins and α-helical peptides have been the focus of drug discovery campaigns. However, the large interfaces formed between multiple turns of an α-helix and a binding protein represent a significant challenge to inhibitor discovery. Modified peptides featuring helix-stabilizing macrocycles have shown promise as inhibitors of these interactions.

View Article and Find Full Text PDF

Microcin J25 (MccJ25), a lasso peptide antibiotic with a unique structure that resembles the lariat knot, has been a topic of intense interest since its discovery in 1992. The precursor (McjA) contains a leader and a core segment. McjB is a protease activated upon binding to the leader, and McjC converts the core segment into the mature MccJ25.

View Article and Find Full Text PDF

The protein levels of chloroplast photosynthetic genes and genes related to the chloroplast genetic apparatus vary to adapt to different conditions. However, the underlying mechanisms governing these variations remain unclear. The chloroplast intron Maturase K is encoded within the trnK intron and has been suggested to be required for splicing several group IIA introns, including the trnK intron.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!