Fast current intermittency of the tunneling current through single semiconductor quantum dots was observed through time-resolved intermittent contact conductive atomic force microscopy in the dark and under illumination at room temperature. The current through a single dot switches on and off at time scales ranging from microseconds to seconds with power-law distributions for both the on and off times. On states are attributed to the resonant tunneling of charges from the electrically conductive AFM tip to the quantum dot, followed by transfer to the substrate, whereas off states are attributed to a Coulomb blockade effect in the quantum dots that shifts the energy levels out of resonance conditions due to the presence of the trapped charge, while at the same bias. The observation of current intermittency due to Coulomb blockade effects has important implications for the understanding of carrier transport through arrays of quantum dots.

Download full-text PDF

Source
http://dx.doi.org/10.1021/nl3036096DOI Listing

Publication Analysis

Top Keywords

quantum dots
16
fast current
8
current intermittency
8
current single
8
states attributed
8
coulomb blockade
8
quantum
5
current blinking
4
blinking individual
4
individual pbs
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!