The ZIC transcription factors are key mediators of embryonic development and ZIC3 is the gene most commonly associated with situs defects (heterotaxy) in humans. Half of patient ZIC3 mutations introduce a premature termination codon (PTC). In vivo, PTC-containing transcripts might be targeted for nonsense-mediated decay (NMD). NMD efficiency is known to vary greatly between transcripts, tissues and individuals and it is possible that differences in survival of PTC-containing transcripts partially explain the striking phenotypic variability that characterizes ZIC3-associated congenital defects. For example, the PTC-containing transcripts might encode a C-terminally truncated protein that retains partial function or that dominantly interferes with other ZIC family members. Here we describe the katun (Ka) mouse mutant, which harbours a mutation in the Zic3 gene that results in a PTC. At the time of axis formation there is no discernible decrease in this PTC-containing transcript in vivo, indicating that the mammalian Zic3 transcript is relatively insensitive to NMD, prompting the need to re-examine the molecular function of the truncated proteins predicted from human studies and to determine whether the N-terminal portion of ZIC3 possesses dominant-negative capabilities. A combination of in vitro studies and analysis of the Ka phenotype indicate that it is a null allele of Zic3 and that the N-terminal portion of ZIC3 does not encode a dominant-negative molecule. Heterotaxy in patients with PTC-containing ZIC3 transcripts probably arises due to loss of ZIC3 function alone.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3634658PMC
http://dx.doi.org/10.1242/dmm.011668DOI Listing

Publication Analysis

Top Keywords

ptc-containing transcripts
12
zic3
9
zic3 transcript
8
premature termination
8
termination codon
8
nonsense-mediated decay
8
axis formation
8
zic3 gene
8
n-terminal portion
8
portion zic3
8

Similar Publications

Generating nonessential gene knockouts using CRISPR/Cas9 technology is becoming increasingly common in biological research. In a typical workflow, the Cas9 endonuclease is used to induce a DNA double-strand break that relies on nonhomologous end-joining (NHEJ) to introduce a premature termination codon (PTC) in the target gene. The goal is to isolate clones in which the gene produces PTC-containing mRNA transcripts that are degraded via nonsense-mediated mRNA decay (NMD) to cause loss of gene function.

View Article and Find Full Text PDF

Aims/hypothesis: Wolfram syndrome 1 (WS1) is an inherited condition mainly manifesting in childhood-onset diabetes mellitus and progressive optic nerve atrophy. The causative gene, WFS1, encodes wolframin, a master regulator of several cellular responses, and the gene's mutations associate with clinical variability. Indeed, nonsense/frameshift variants correlate with more severe symptoms than missense/in-frame variants.

View Article and Find Full Text PDF

For monogenic diseases caused by pathogenic loss-of-function DNA variants, attention focuses on dysregulated gene-specific pathways, usually considering molecular subtypes together within causal genes. To better understand phenotypic variability in hereditary hemorrhagic telangiectasia (HHT), we subcategorized pathogenic DNA variants in ENG/endoglin, ACVRL1/ALK1, and SMAD4 if they generated premature termination codons (PTCs) subject to nonsense-mediated decay. In 3 patient cohorts, a PTC-based classification system explained some previously puzzling hemorrhage variability.

View Article and Find Full Text PDF

UPF1-mediated decay entails several mRNA surveillance pathways that play a crucial role in cellular homeostasis. However, the precise role of UPF1 in postmitotic neurons remains unresolved, as does its activity in amyotrophic lateral sclerosis (ALS), a devastating neurodegenerative disease characterized by TDP-43 pathology and disrupted mRNA metabolism. Here, we used human iPSC-derived spinal motor neurons (MNs) to identify mRNAs subject to UPF1 degradation by integrating RNA-seq before and after UPF1 knockdown with RIP-seq to identify RNAs that co-immunoprecipitate with the active form of phosphorylated UPF1.

View Article and Find Full Text PDF

RNA quality control is crucial for proper regulation of gene expression. Disruption of nonsense mediated mRNA decay (NMD), the primary RNA decay pathway responsible for the degradation of transcripts containing premature termination codons (PTCs), can disrupt development and lead to multiple diseases in humans and other animals. Similarly, therapies targeting NMD may have applications in hematological, neoplastic and neurological disorders.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!