The objective of this study was to determine the magnitude of genotype by climate interaction (GCI) in the national genetic evaluation for weaning (WW) and yearling (YW) weights of Mexican Braunvieh cattle. The numbers of performance records and animals in the pedigree were 12,364 and 25,173 for WW, and 7,991 and 18,072 for YW, respectively. Performance records were clustered based on climatological variables into: dry tropic (DT), wet tropic (WT), and temperate (TE) climates. Animal models were used to estimate genetic parameters and predict breeding values in each of the climates. Bivariate analyses were carried out for pairwise combinations of climates on each trait, considering the same trait in different climates as a different trait. Criteria to evaluate GCI were genetic correlations (r g), correlations between predicted breeding values (r BV), and frequencies of coincidence (FC) in the ranking of the top 25 sires. Results of comparisons between pairs of climates were variable, depending on specific cases. For WW, the r g, r BV, and FC ranged from -0.36 to 0.84, -0.60 to 0.97, and 0.16 to 0.92, respectively; whereas for YW, they fluctuated between 0.23 and 0.99, 0.33 and 1.00, and 0.60 and 1.00, respectively. For both traits, the results suggest absence of GCI between DT and TE; however, GCI was detected in the other pairs of climates, where WT was involved. To maximize genetic progress, the joint genetic evaluation should be performed only for animals with performance data in DT and TE, whereas a separated evaluation is suggested for animals with performance records generated under WT conditions.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/s11250-013-0387-2 | DOI Listing |
Brief Bioinform
November 2024
Biotherapeutics Molecule Discovery, Boehringer Ingelheim Pharmaceutical Inc., 900 Ridgebury Road, Ridgefield, CT 06877, United States.
Antibody generation requires the use of one or more time-consuming methods, namely animal immunization, and in vitro display technologies. However, the recent availability of large amounts of antibody sequence and structural data in the public domain along with the advent of generative deep learning algorithms raises the possibility of computationally generating novel antibody sequences with desirable developability attributes. Here, we describe a deep learning model for computationally generating libraries of highly human antibody variable regions whose intrinsic physicochemical properties resemble those of the variable regions of the marketed antibody-based biotherapeutics (medicine-likeness).
View Article and Find Full Text PDFBrief Bioinform
November 2024
Guangdong Provincial Key Laboratory of Mathematical and Neural Dynamical Systems, Great Bay University, No. 16 Daxue Rd, Songshanhu District, Dongguan, Guangdong, 523000, China.
Multimodal omics provide deeper insight into the biological processes and cellular functions, especially transcriptomics and proteomics. Computational methods have been proposed for the integration of single-cell multimodal omics of transcriptomics and proteomics. However, existing methods primarily concentrate on the alignment of different omics, overlooking the unique information inherent in each omics type.
View Article and Find Full Text PDFWhile telegenetic counseling has increased substantially since the start of the COVID-19 pandemic, previous studies reported concerns around building rapport, nonverbal communication, and the patient-counselor relationship. This qualitative evaluation elicited feedback from genetic counselors, referring clinicians, and patients from a single healthcare organization to understand the user-driven reasons for overall satisfaction and experience. We conducted 22 in-depth, semi-structured interviews with participants from all 3 groups between February 2022 and February 2023.
View Article and Find Full Text PDFCirc Genom Precis Med
January 2025
Division of Cardiology, Department of Medicine, Massachusetts General Hospital, Harvard Medical School, Boston. (S.M.U., K.P., B.T., A.C.F., P.N.).
Background: Earlier identification of high coronary artery disease (CAD) risk individuals may enable more effective prevention strategies. However, existing 10-year risk frameworks are ineffective at earlier identification. We sought to understand how the variable importance of genomic and clinical factors across life stages may significantly improve lifelong CAD event prediction.
View Article and Find Full Text PDFCirc Genom Precis Med
January 2025
Centre for Heart Lung Innovation, University of British Columbia, Vancouver. (K.H., M.A., L.R., Y.L., A.S., H.H., L.R.B., Z.W.L.).
Background: Protein-truncating mutations in the titin gene are associated with increased risk of atrial fibrillation. However, little is known about the underlying pathophysiology.
Methods: We identified a heterozygous titin truncating variant (TTNtv) in a patient with unexplained early onset atrial fibrillation and normal ventricular function.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!