In apomictic Hieracium subgenus Pilosella species, embryo sacs develop in ovules without meiosis. Embryo and endosperm formation then occur without fertilization, producing seeds with a maternal genotype encased in a fruit (achene). Genetic analyses in H. praealtum indicate a dominant locus (LOA) controls meiotic avoidance, and another dominant locus (LOP) controls both fertilization-independent embryogenesis and endosperm formation. While cytologically examining developmental events in ovules of progeny from crosses between different wild-type and mutant Hieracium apomicts, and a sexual Hieracium species, we identified two plants, AutE196 and AutE24, which have lost the capacity for meiotic avoidance and fertilization-independent embryo formation. AutE196 and AutE24 exhibit autonomous endosperm formation and set parthenocarpic, seedless achenes at a penetrance of 18 %. Viable seed form after pollination. Cytological examination of 102 progeny from a backcross of AutE196 with sexual H. pilosella showed that autonomous endosperm formation is a heritable, dominant, qualitative trait, detected in 51 % of progeny. Variation in quantitative trait penetrance indicates other factors influence its expression. The correlation between autonomous endosperm development and mature parthenocarpic achene formation suggests the former is sufficient to trigger fruit maturation in Hieracium. The developmental component of autonomous endosperm formation is therefore genetically separable from those controlling meiotic avoidance and autonomous embryogenesis in Hieracium and has been denoted as AutE. We postulate that tight linkage of AutE and genes controlling autonomous embryogenesis at the LOP locus in H. praealtum may explain why inheritance of autonomous seed formation is typically observed as a single component.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/s00497-013-0214-y | DOI Listing |
Plants (Basel)
January 2025
Rice Research Institute, Anhui Academy of Agricultural Sciences, Hefei 230031, China.
Grain chalkiness adversely affects rice quality, and the positional variation of grain chalkiness within a rice panicle presents a substantial obstacle to quality improvement in China. However, the molecular mechanism underlying this variation is unclear. This study conducted a genetic and physiological analysis of grains situated at distinct positions (upper, middle, and bottom primary branches of the rice panicle, denoted as Y1, Y2, and Y3) within a rice panicle using the Yangdao 6 variety.
View Article and Find Full Text PDFBMC Plant Biol
January 2025
Institute of Food Crops, Yunnan Academy of Agricultural Sciences, Kunming, China.
Background: Starch is the most abundant carbohydrate in maize grains, serving as a primary energy source for both humans and animals, and playing a crucial role in various industrial applications. Increasing the starch content of maize grains is beneficial for improving the grain yield and quality. To gain insight into the genetic basis of starch content in maize kernels, a multiparent population (MPP) was constructed and evaluated for starch content in three different environments.
View Article and Find Full Text PDFTrends Plant Sci
January 2025
University of Vienna, Djerassiplatz 1, 1030 Vienna, Austria; University of Applied Sciences Dresden, Pillnitzer Platz 2, 01326 Dresden, Germany. Electronic address:
Recent research indicates an involvement of microautophagy in the uptake of seed storage proteins (SSPs) into the plant-specific protein storage vacuole (PSV), particularly in cereal grains. However, because microautophagy plays a vital role in cellular homeostasis by degrading and recycling cellular components, we question whether it is a suitable term for a process involved in long-term storage. Additionally, because fission-type microautophagy shares mechanistic similarities with the intraluminal vesicle (ILV) formation of multivesicular bodies (MVBs), we draw parallels between microautophagy and membrane remodeling facilitated by the endosomal sorting complex required for transport (ESCRT).
View Article and Find Full Text PDFBiochem Soc Trans
January 2025
Centre for Plant Molecular Biology, University of Tübingen, Tübingen 72076, Germany.
Primary axis formation is the first step of embryonic patterning in flowering plants and recent findings highlight the importance of parent-of-origin effects in this process. Apical-basal patterning has a strong influence on suspensor development, an extra-embryonic organ involved in nutrient transport to the embryo at an early stage of seed development. The endosperm, a second fertilization product, nourishes the embryo at later stages of seed development.
View Article and Find Full Text PDFBiochem J
January 2025
Universiteit Gent, Ghent, Belgium.
Thiamin, an essential micronutrient, is a cofactor for enzymes involved in the central carbon metabolism and amino acids pathways. Despite efforts to enhance thiamin content in rice by incorporating thiamin biosynthetic genes, increasing thiamin content in endosperm remains challenging, possibly due to a lack of thiamin stability and/or a local sink. The introduction of storage proteins has been successful in biofortification strategies and similar efforts targeting thiamin led to a 3-4-fold increase in white rice.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!