Regulating DNA replication in bacteria.

Cold Spring Harb Perspect Biol

Department of Cell Biology, Institute for Cancer Research, The Radium Hospital, Oslo University Hospital, 0310 Oslo, Norway.

Published: April 2013

The replication origin and the initiator protein DnaA are the main targets for regulation of chromosome replication in bacteria. The origin bears multiple DnaA binding sites, while DnaA contains ATP/ADP-binding and DNA-binding domains. When enough ATP-DnaA has accumulated in the cell, an active initiation complex can be formed at the origin resulting in strand opening and recruitment of the replicative helicase. In Escherichia coli, oriC activity is directly regulated by DNA methylation and specific oriC-binding proteins. DnaA activity is regulated by proteins that stimulate ATP-DnaA hydrolysis, yielding inactive ADP-DnaA in a replication-coupled negative-feedback manner, and by DnaA-binding DNA elements that control the subcellular localization of DnaA or stimulate the ADP-to-ATP exchange of the DnaA-bound nucleotide. Regulation of dnaA gene expression is also important for initiation. The principle of replication-coupled negative regulation of DnaA found in E. coli is conserved in eukaryotes as well as in bacteria. Regulations by oriC-binding proteins and dnaA gene expression are also conserved in bacteria.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3683904PMC
http://dx.doi.org/10.1101/cshperspect.a012922DOI Listing

Publication Analysis

Top Keywords

replication bacteria
8
dnaa
8
oric-binding proteins
8
proteins dnaa
8
regulation dnaa
8
dnaa gene
8
gene expression
8
regulating dna
4
dna replication
4
bacteria
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!