Raman microscopy is a promising technology for visualizing the distribution of molecules in cells. A challenge for live-cell imaging using Raman microscopy has been long imaging times owing to the weak Raman signal. Here we present a protocol for constructing and using a Raman microscope equipped with both a slit-scanning excitation and detection system and a laser steering and nanoparticle-tracking system. Slit scanning allows Raman imaging with high temporal and spatial resolution, whereas the laser beam steering system enables dynamic surface-enhanced Raman imaging using gold nanoparticles. Both features enable mapping of the distributions of molecules in live cells and visualization of cellular transport pathways. Furthermore, its utility can be expanded to small-molecule imaging by using tiny Raman-active tags such as alkyne. For example, DNA synthesis in a cell can be visualized by detecting 5-ethynyl-2'-deoxyuridine (EdU), a deoxyuridine derivative with an alkyne moiety. We describe the optics, hardware and software to construct the Raman microscope, and discuss the conditions and parameters involved in live-cell imaging. The whole system can be built in ∼8 h.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1038/nprot.2013.030 | DOI Listing |
Microsc Res Tech
January 2025
Department of Physics, East Tehran Branch, Islamic Azad University, Tehran, Iran.
SnO thin films were deposited on Si substrates by radio frequency (RF) magnetron sputtering technique, and the effects of different sputtering power (60-90 W) on the structural, surface morphological, and electrical properties of the film were investigated with XRD, Raman, AFM, SEM, and fore point probe. The deposited SnO film at lower RF was amorphous, while well-defined intense XRD signals at higher RF power indicated significant improvement in crystalline nature. E and A vibrating modes related to SnO were clearly observed in the Raman spectra.
View Article and Find Full Text PDFGout, a common chronic disease, is characterized by the formation and deposition of monosodium urate (MSU) crystal deposition in articular and nonarticular structures. Osteoarthritis (OA), the most prevalent type of arthritis, is a progressive degenerative joint disease. Previous clinical studies have reported that gout frequently affects OA joints; however, the underlying mechanism remains unidentified.
View Article and Find Full Text PDFNatl Sci Rev
January 2025
State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou 350002, China.
Two-dimensional (2D) van der Waals (vdW) materials are known for their intriguing physical properties, but their rational design and synthesis remain a great challenge for chemists. In this work, we successfully synthesized a new non-centrosymmetric oxide, i.e.
View Article and Find Full Text PDFRSC Adv
January 2025
Phenikaa University Nano Institute (PHENA), Phenikaa University Hanoi 12116 Vietnam
Surface-enhanced Raman spectroscopy (SERS) is widely recognized as a powerful analytical technique, offering molecular identification by amplifying characteristic vibrational signals, even at the single-molecule level. While SERS has been successfully applied for a wide range of targets including pesticides, dyes, bacteria, and pharmaceuticals, it has struggled with the detection of molecules with inherently low Raman scattering cross-sections. Urea, a key nitrogen-containing biomolecule and the diamide of carbonic acid, is a prime example of such a challenging target.
View Article and Find Full Text PDFRSC Adv
January 2025
The Second Department, Xi' an Modern Chemistry Research Institute Xi'an 710065 China
To fully understand the variation in performance of cyclotrimethylenetrinitramine (RDX) crystals under strong magnetic field exposure, the strong magnetic loading of RDX was conducted in both stable and alternating magnetic fields. The morphological changes of RDX crystals exposed to magnetic fields were studied under a scanning electron microscope. Then, the lattice changes of RDX exposed to magnetic fields were analyzed through X-ray diffraction and Raman spectroscopy.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!