Because sucrose stored in mature stalks (in excess of 40% of stalk dry weight) can be wholly mobilized to supply carbon for the growth of heterotrophic tissues, we propose that sucrose mobilization requires a net sink-to-source transition that acts in toto within sett internode storage parenchyma. Based on our data we propose that mobilization of sucrose from culm storage parenchyma requires minimal investment of metabolic resources, and that the mechanism of sucrose mobilization is metabolically neutral. By magnetic resonance spectroscopy and phloem-specific tracer dyes, strong evidence was found that sucrose is mobilized from sett storage parenchyma via phloem to the growing shoot tissue. An analysis of the enzyme activities involved in sucrose metabolism and glycolysis suggested that sucrose synthase activity is downregulated due to the effects of sucrose mobilization. Overall, metabolism in storage parenchyma shifts from futile cycling to a more quiescent state during sucrose mobilization.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1271/bbb.120682 | DOI Listing |
Plant Physiol Biochem
November 2024
Biodiversity Research Institute (IMIB), University of Oviedo - CSIC - Principality of Asturias, E-33600, Mieres, Spain.
Lipid metabolism may play a critical role in fueling seed germination, but the knowledge of lipid metabolism during germination is still ambiguous. Here, we hypothesize that gibberellic acid (GA) promotes germination by means of enhancing lipid mobilization in Chinese pistachio (Pistacia chinensis Bunge), a species belonging to Anacardiaceae with high oil content in its seeds. A multi-omics approach has been applied to measure lipid mobilization during seed germination, and to identify the key regulators involved in GA-mediated lipid metabolism.
View Article and Find Full Text PDFBMC Plant Biol
December 2024
State Key Laboratory of Aridland Crop Science, Gansu Agricultural University, Lanzhou, 730070, PR China.
Seed germination is one of the critical and sensitive stages of early plant growth, and its process is prevented by cinnamic acid (CA). Silicon (Si) plays a critical role in mitigating abiotic stresses and seed germination in plants, but little is known about its role in seed germination and physiology in CA-stressed cucumber. Here, we conducted experiments in the State Key Laboratory of Aridland Crop Science, Gansu Agricultural University from March to June 2021 to investigate the effects of Si-seed priming on growth, antioxidant capacity, sucrose mobilization and respiratory metabolism during germination under CA stress.
View Article and Find Full Text PDFJ Plant Res
January 2025
Unidad de Estudios Agropecuarios (UDEA- CONICET), Camino 60 Cuadras Km 5.5, X5020ICA, Córdoba, Argentina.
Plants (Basel)
September 2024
School of Agricultural Technology and Food Industry, Walailak University, Nakhon Si Thammarat 80161, Thailand.
Ann Bot
July 2024
Institute of Grassland Science, Northeast Normal University, Key Laboratory of Vegetation Ecology, Ministry of Education, Changchun, 130024, China.
Background And Aims: Soil salinization adversely threatens plant survival and food production globally. The mobilization of storage reserves in cotyledons and establishment of the hypocotyl/root axis (HRA) structure and function are crucial to the growth of dicotyledonous plants during the post-germination growth period. Here, we report the adaptive mechanisms of wild and cultivated soybeans in response to alkali stress in soil during the post-germination growth period.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!