Dullard/Ctdnep1 is a member of the serine/threonine phosphatase family of the C-terminal domain of eukaryotic RNA polymerase II. Embryos lacking Dullard activity fail to form primordial germ cells (PGCs). In the mouse, the formation of PGCs is influenced by BMP4 and WNT3 activity. Although Dullard is reputed to negatively regulate BMP receptor function, in this study we found mutations in Dullard had no detectable effect on BMP4 and p-Smad activity. Furthermore Dullard mutations did not influence the dosage-dependent inductive effect of Bmp4 in PGC formation. However, Dullard may function as a positive regulator of WNT signalling. Combined loss of one copy each of Dullard and Wnt3 had a synergistic effect on the reduction of PGC numbers in the compound heterozygous embryo. In addition, loss of Dullard function was accompanied by down-regulation of WNT/β-catenin signalling activity and a reduction in the level of Dishevelled 2 (Dvl2). Therefore, Dullard may play a role in the fine-tuning of WNT signalling activity by modulating the expression of ligands/antagonists and the availability of Dvl2 protein during specification of the germ cell lineage.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3587611 | PMC |
http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0057428 | PLOS |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!