Glioblastoma multiforme (GBM), the most common and malignant type of glioma, is characterized by a poor prognosis and the lack of an effective treatment, which are due to a small sub-population of cells with stem-like properties, termed glioma stem cells (GSCs). The term "multiforme" describes the histological features of this tumor, that is, the cellular and morphological heterogeneity. At the molecular level multiple layers of alterations may reflect this heterogeneity providing together the driving force for tumor initiation and development. In order to decipher the common "signature" of the ancestral GSC population, we examined six already characterized GSC lines evaluating their cytogenomic and epigenomic profiles through a multilevel approach (conventional cytogenetic, FISH, aCGH, MeDIP-Chip and functional bioinformatic analysis). We found several canonical cytogenetic alterations associated with GBM and a common minimal deleted region (MDR) at 1p36.31, including CAMTA1 gene, a putative tumor suppressor gene, specific for the GSC population. Therefore, on one hand our data confirm a role of driver mutations for copy number alterations (CNAs) included in the GBM genomic-signature (gain of chromosome 7- EGFR gene, loss of chromosome 13- RB1 gene, loss of chromosome 10-PTEN gene); on the other, it is not obvious that the new identified CNAs are passenger mutations, as they may be necessary for tumor progression specific for the individual patient. Through our approach, we were able to demonstrate that not only individual genes into a pathway can be perturbed through multiple mechanisms and at different levels, but also that different combinations of perturbed genes can incapacitate functional modules within a cellular networks. Therefore, beyond the differences that can create apparent heterogeneity of alterations among GSC lines, there's a sort of selective force acting on them in order to converge towards the impairment of cell development and differentiation processes. This new overview could have a huge importance in therapy.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3585345 | PMC |
http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0057462 | PLOS |
Zygote
June 2024
Department of Animal Genetics and Breeding, Lala Lajpat Rai University of Veterinary and Animal Sciences, Hisar, Haryana, India.
Epigenetic mechanisms, such as DNA methylation, histone modifications and non-coding RNA molecules, play a critical role in gene expression and regulation in livestock species, influencing development, reproduction and disease resistance. DNA methylation patterns silence gene expression by blocking transcription factor binding, while histone modifications alter chromatin structure and affect DNA accessibility. Livestock-specific histone modifications contribute to gene expression and genome stability.
View Article and Find Full Text PDFJ Neuropathol Exp Neurol
April 2024
Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, Minnesota, USA.
Diffuse midline glioma, H3 K27-altered (DMG-H3 K27) is an aggressive group of diffuse gliomas that predominantly occurs in pediatric patients, involves midline structures, and displays loss of H3 p.K28me3 (K27me3) expression by immunohistochemistry and characteristic genetic/epigenetic profile. Rare examples of a diffuse glioma with an H3 p.
View Article and Find Full Text PDFBest Pract Res Clin Haematol
December 2023
Institut D'Investigacions Biomèdiques August Pi I Sunyer (IDIBAPS), Barcelona, Spain; Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Madrid, Spain; Universitat de Barcelona, Spain; Hematopathology Section, Pathology Department, Hospital Clínic Barcelona, Barcelona, Spain. Electronic address:
For the routine diagnosis of haematological neoplasms an integrative approach is used considering the morphology, and the immunophenotypic, and molecular features of the tumor sample, along with clinical information. The identification and characterization of recurrent chromosomal aberrations mainly detected by conventional and molecular cytogenetics in the tumor cells has a major impact on the classification of lymphoid neoplasms. Some of the B-cell non-Hodgkin lymphomas are characterized by particular chromosomal aberrations, highlighting the relevance of conventional and molecular cytogenetic studies in their diagnosis and prognosis.
View Article and Find Full Text PDFInt J Mol Sci
September 2023
Translational Neurodegeneration Section "Albrecht-Kossel", Department of Neurology, University Medical Center Rostock, 18147 Rostock, Germany.
The Special Issue State-of-the-Art Molecular Genetics and Genomics in Germany focuses on German researchers and their international peers, covering their recent advances in genetics, genomics, epigenetics, and cytogenetics/cytogenomics in relation to prokaryotic and eukaryotic multicellular to mammalian organisms in arras ranging from basic to medical research [...
View Article and Find Full Text PDFHum Mutat
November 2022
Department of Pathology and Laboratory Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA.
This special issue of Human Mutation focuses on Innovations in Genomic Diagnostics. The increasing interest in genomic medicine, and the growing possibilities for treatment and management of genetic disease, make complete and accurate diagnosis mission critical. This issue describes leading-edge technologies with emerging utility for genomic diagnostics.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!