Bcl-XL is a member of Bcl-2 family of proteins involved in the regulation of intrinsic pathway of apoptosis. Its overexpression in many human cancers makes it an important target for anti-cancer drugs. Bcl-XL interacts with the BH3 domain of several pro-apoptotic Bcl-2 partners. This helical bundle protein has a pronounced hydrophobic groove which acts as a binding region for the BH3 domains. Eight independent molecular dynamics simulations of the apo/holo forms of Bcl-XL were carried out to investigate the behavior of solvent-exposed hydrophobic groove. The simulations used either a twin-range cut-off or particle mesh Ewald (PME) scheme to treat long-range interactions. Destabilization of the BH3 domain-containing helix H2 was observed in all four twin-range cut-off simulations. Most of the other major helices remained stable. The unwinding of H2 can be related to the ability of Bcl-XL to bind diverse BH3 ligands. The loss of helical character can also be linked to the formation of homo- or hetero-dimers in Bcl-2 proteins. Several experimental studies have suggested that exposure of BH3 domain is a crucial event before they form dimers. Thus unwinding of H2 seems to be functionally very important. The four PME simulations, however, revealed a stable helix H2. It is possible that the H2 unfolding might occur in PME simulations at longer time scales. Hydrophobic residues in the hydrophobic groove are involved in stable interactions among themselves. The solvent accessible surface areas of bulky hydrophobic residues in the groove are significantly buried by the loop LB connecting the helix H2 and subsequent helix. These observations help to understand how the hydrophobic patch in Bcl-XL remains stable in the solvent-exposed state. We suggest that both the destabilization of helix H2 and the conformational heterogeneity of loop LB are important factors for binding of diverse ligands in the hydrophobic groove of Bcl-XL.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3585337 | PMC |
http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0054397 | PLOS |
Int J Biol Macromol
December 2024
Center of Biomass Engineering/College of Agronomy and Biotechnology, China Agricultural University, Beijing, China; Sanya Institute of China Agricultural University, Sanya 572025, China. Electronic address:
Inexpensive biomass materials hold great potential for the development of green delivery systems aimed at improving the extremely low utilization efficiency of pesticides. However, current systems face challenges in achieving both high encapsulation rates and drug loading capacities. This study introduces a novel method using chitosan (CS) and sodium lignosulfonate (SL) to co-assemble with avermectin (AVM), a widely used hydrophobic pesticide, forming AVM-CS-SL micro-nano capsules.
View Article and Find Full Text PDFJ Mol Biol
December 2024
Sir William Dunn School of Pathology, University of Oxford, Oxford OX1 3RE, UK. Electronic address:
The outer membrane of Gram-negative bacteria provides a formidable barrier, essential for both pathogenesis and antimicrobial resistance. Biogenesis of this complex structure necessitates the transport of phospholipids across the cell envelope. Recently, YhdP was implicated as a major protagonist in the trafficking of inner membrane phospholipids to the outer membrane; however the molecular mechanism of YhdP mediated transport remains elusive.
View Article and Find Full Text PDFSci Rep
December 2024
Graduate School of Medicine, Science and Technology, Shinshu University, 3-15-1 Tokida, Ueda, Nagano, 386-8567, Japan.
Biomimetic periodic structures have garnered attention due to their excellent water repellency. The normal-taper angle, which is aspects of the cross-sectional structure, is important factor in achieving water repellency and pressure resistance; however, the underlying physical phenomenon has not been fully explained. Moreover, once a surface becomes hydrophobic, it is difficult to measure the apparent contact angle.
View Article and Find Full Text PDFNat Commun
December 2024
Center for Global Health and Diseases, Department of Pathology, Case Western Reserve University School of Medicine, Cleveland, USA.
New therapeutics are necessary for preventing Plasmodium vivax malaria due to easy transmissibility and dormancy in the liver that increases the clinical burden due to recurrent relapse. In this manuscript we characterize 12 Pv Apical Membrane Antigen 1 (PvAMA1) specific human monoclonal antibodies from Peripheral Blood Mononuclear Cells of a Pv-exposed individual. PvAMA1 is essential for sporozoite and merozoite invasion, making it a unique therapeutic target.
View Article and Find Full Text PDFBiophys J
November 2024
Department of Chemistry, University of Illinois Urbana-Champaign, Urbana, Illinois; Department of Physics, University of Illinois Urbana-Champaign, Urbana, Illinois; Center for Biophysics and Quantitative Biology, University of Illinois Urbana-Champaign, Urbana, Illinois; Carle-Illinois College of Medicine, University of Illinois Urbana-Champaign, Urbana, Illinois; Beckman Institute for Advanced Science and Technology, University of Illinois Urbana-Champaign, Urbana, Illinois. Electronic address:
Hirudin is a bioactive small protein that binds thrombin to interrupt the blood clotting cascade. It contains an ordered and a disordered (IDR) region. Conjugating with polyethylene glycol (PEGylation) is an important modification of biopharmaceuticals to improve their lifetime and retention.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!