Objectives: The aim of this study was to identify meteorological factors that could be associated with an increased risk of community-acquired Legionnaires' disease (LD) in two Swiss regions.

Design: Retrospective epidemiological study using discriminant analysis and multivariable Poisson regression.

Setting: We analysed legionellosis cases notified between January 2003 and December 2007 and we looked for a possible relationship between incidence rate and meteorological factors.

Participants: Community-acquired LD cases in two Swiss regions, the Canton Ticino and the Basle region, with climatically different conditions were investigated.

Primary Outcome Measures: Vapour pressure, temperature, relative humidity, wind, precipitation and radiation recorded in weather stations of the two Swiss regions during the period January 2003 and December 2007.

Results: Discriminant analysis showed that the two regions are characterised by different meteorological conditions. A multiple Poisson regression analysis identified region, temperature and vapour pressure during the month of infection as significant risk factors for legionellosis. The risk of developing LD was 129.5% (or 136.4% when considering vapour pressure instead of temperature in the model) higher in the Canton Ticino as compared to the Basle region. There was an increased relative risk of LD by 11.4% (95% CI 7.70% to 15.30%) for each 1 hPa rise of vapour pressure or by 6.7% (95% CI 4.22% to 9.22%) for 1°C increase of temperature.

Conclusions: In this study, higher water vapour pressure and heat were associated with a higher risk of community-acquired LD in two regions of Switzerland.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3612760PMC
http://dx.doi.org/10.1136/bmjopen-2012-002428DOI Listing

Publication Analysis

Top Keywords

vapour pressure
20
risk community-acquired
12
meteorological factors
8
community-acquired legionnaires'
8
legionnaires' disease
8
epidemiological study
8
discriminant analysis
8
january 2003
8
2003 december
8
swiss regions
8

Similar Publications

In this paper, we quantitatively compare the autofluorescence of stoichiometric low pressure chemical vapor deposition (LPCVD) silicon nitride and sputtered tantalum pentoxide waveguides at a pump wavelength of 532 nm. Through a direct quantitative characterization of comparable waveguides formed from the two films, we find no observable autofluorescence for tantalum pentoxide waveguides. Our experimental sensitivity is limited by Raman scattering of the pump into our detection band and our measurements indicate that the autofluorescence of the tantalum pentoxide waveguides is more than 600 × smaller than that of silicon nitride waveguides.

View Article and Find Full Text PDF

Accurately predicting the phase behavior and properties of reservoir fluid plays an essential role in the simulation of petroleum recovery processes. Similar to the inaccurate liquid-density prediction issue in the isobaric-isothermal (PT) phase equilibrium calculations, an inaccurate pressure prediction issue can also be observed in isothermal-isochoric (VT) phase equilibrium calculations which involves a liquid phase. In this work, a practical methodology is proposed to incorporate a volume-translated equation of state in VT phase equilibrium calculations for more accurate pressure predictions.

View Article and Find Full Text PDF

Early diagnosis of pancreatic ductal adenocarcinoma (PDAC) is challenging because of its depth, which often leads to misdiagnosis during ultrasound examinations. The unique PDAC tumor microenvironment (TME) is characterized by significant fibrous tissue growth, and high interstitial pressure hinders drug penetration into tumors. Additionally, hypoxia and immune suppression within the tumor contribute to poor responses to radiotherapy and chemotherapy, ultimately leading to an unfavorable prognosis.

View Article and Find Full Text PDF

Universal kinetic description for the thermal dehydration of sodium carbonate monohydrate powder across different temperatures and water vapor pressures.

Phys Chem Chem Phys

January 2025

Department of Science Education, Graduate School of Humanities and Social Sciences, Hiroshima University, 1-1-1 Kagamiyama, Higashi-Hiroshima 739-8524, Japan.

The thermal dehydration of sodium carbonate monohydrate (SC-MH) exhibits kinetic characteristics that are typical of the thermal decomposition of solids with a reversible nature. One of the characteristics is the physico-geometrical constraints of the reaction due to the heterogeneous reaction feature. Another factor is the considerable impact of the atmospheric and self-generated water vapor on the kinetics.

View Article and Find Full Text PDF

Patterns and Drivers of Surface Energy Flux in the Alpine Meadow Ecosystem in the Qilian Mountains, Northwest China.

Plants (Basel)

January 2025

Key Laboratory of Ecological Safety and Sustainable Development in Arid Lands, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou 730000, China.

Alpine meadows are vital ecosystems on the Qinghai-Tibet Plateau, significantly contributing to water conservation and climate regulation. This study examines the energy flux patterns and their driving factors in the alpine meadows of the Qilian Mountains, focusing on how the meteorological variables of net radiation (), air temperature, vapor pressure deficit (), wind speed (), and soil water content () influence sensible heat flux () and latent heat flux (). Using the Bowen ratio energy balance method, we monitored energy changes during the growing and non-growing seasons from 2022 to 2023.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!