A new, simple, inexpensive, and rapid 96-well plate UV spectrophotometric method was developed and validated for the quantification of compound 48/80 (C48/80) associated with particles. C48/80 was quantified at 570 nm after reaction with acetaldehyde and sodium nitroprusside in an alkaline solution (pH 9.6). The method was validated according to the recommendations of the ICH Guidelines for specificity, linearity, range, accuracy, precision, and detection and quantification limits (DL and QL). All the validation parameters were assessed in three different solvents, i.e., deionized water, blank matrix of chitosan nanoparticles, and blank matrix of chitosan/alginate nanoparticles. The method was found to be linear in the concentration range of 5 to 160 μg/ml (R(2)>0.9994). Intraday and interday precision was adequate, with relative standard deviation lower than those given by the Horwitz equation. The mean recoveries of C48/80 from spiked samples ranged between 98.1% and 105.9% for calibration curves done with the blank matrices and between 89.3% and 103.3% for calibration curves done with water, respectively. The DL were lower than 1.01 μg/ml and the QL were lower than 3.30 μg/ml. The results showed that the developed method is sensitive, linear, precise, and accurate for its intended use, with the additional advantages of being cost-effective and time-effective, allowing the use of small-volume samples, and the simultaneous analysis of a large number of samples. The proposed method was already successfully applied to evaluate the loading efficacy of C48/80 chitosan-based nanoparticles and can be easily applied during the development of other C48/80-based formulations.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3665997PMC
http://dx.doi.org/10.1208/s12249-013-9950-4DOI Listing

Publication Analysis

Top Keywords

96-well plate
8
plate spectrophotometric
8
spectrophotometric method
8
quantification compound
8
compound 48/80
8
associated particles
8
blank matrix
8
calibration curves
8
method
6
validation 96-well
4

Similar Publications

High-throughput non-homogenous 3D polycaprolactone scaffold for cancer cell and cancer-associated fibroblast mini-tumors to evaluate drug treatment response.

Toxicol Rep

June 2025

Center for Intelligent Drug Delivery and Sensing Using Microcontainers and Nanomechanics (IDUN), Department of Health Technology, Technical University of Denmark, Kongens Lyngby 2800, Denmark.

High-throughput screening (HTS) three-dimensional (3D) tumor models are a promising approach for cancer drug discovery, as they more accurately replicate cell behavior than two-dimensional (2D) models. However, assessing and comparing current 3D models for drug efficacy remains essential, given the significant influence of cellular conditions on treatment response. To develop mimicking 3D models, we evaluated two HTS 3D models established in 96-well plates with 3D polycaprolactone (PCL) scaffolds fabricated using two distinct methods, resulting in scaffolds with either homogenous or non-homogenous fiber networks.

View Article and Find Full Text PDF
Article Synopsis
  • The study focuses on developing a rapid method to identify microbial strains from seaweed that can quickly acidify, utilize seaweed components, and exhibit proteolytic activity.
  • By using high-throughput screening methods, researchers found specific strains of lactic acid bacteria (LAB) that effectively acidified seaweed in lab-scale tests, specifically Lactiplantibacillus plantarum and Lacticaseibacillus paracasei.
  • The results indicate potential for these strains in seaweed fermentation and suggest that while proteolytic activity was limited, certain strains could release beneficial amino acids during the process.
View Article and Find Full Text PDF

Parallel analysis of phenotype, transcriptome and antigen receptor sequence in single B cells is a useful method for tracking B cell activation and maturation during immune responses. However, in most cases, the specificity and affinity of the B cell antigen receptor cannot be inferred from its sequence. Antibody cloning and expression from single B cells is then required for functional assays.

View Article and Find Full Text PDF

Background/aim: Methionine addiction, known as the Hoffman effect, makes cancer cells more sensitive to methionine restriction than normal cells. However, the long-term effects of methionine restriction on cancer and normal cells have not been thoroughly studied.

Materials And Methods: HCT-116 human colorectal-cancer cells and Hs27 normal skin fibroblasts were treated with 0-8 U/ml of recombinant methioninase (rMETase) for 12 days.

View Article and Find Full Text PDF

Genes involved in DMSO-mediated yield increase of entomopathogenic nematodes.

Sci Rep

December 2024

Guangdong Key Laboratory of Animal Conservation and Resource Utilization, Guangdong Public Laboratory of Wild Animal Conservation and Utilization, Institute of Zoology, Guangdong Academy of Sciences, Guangzhou, 510260, China.

Entomopathogenic nematodes (EPNs) associated with their symbiotic bacteria can effectively kill insect pests, in agriculture, forestry and floriculture. Industrial-scale production techniques for EPNs have been established, including solid and liquid monoculture systems. It is found that supplement of 0.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!