The search for general patterns in the production and allocation of plant defense traits will be facilitated by characterizing multivariate suites of defense, as well as by studying additional plant taxa, particularly those with available genomic resources. Here, we investigated patterns of genetic variation in phytochemical defenses (phenylpropanoid glycosides, PPGs) in Mimulus guttatus (yellow monkeyflower). We grew plants derived from several natural populations, consisting of multiple full-sibling families within each population, in a common greenhouse environment. We found substantial variation in the constitutive multivariate PPG phenotype and in constitutive levels of individual phytochemicals within plants (among leaves of different ages), within populations (among full-sibling families), and among populations. Populations consisting of annual plants generally, but not always, had lower concentrations of phytochemicals than did populations of perennial plants. Populations differed in their plastic response to artificial herbivory, both in the overall multivariate PPG phenotype and in the individual phytochemicals. The relationship between phytochemistry and another defense trait, trichomes, differed among populations. Finally, we demonstrated that one of the PPGs, verbascoside, acts as a feeding stimulant rather than a feeding deterrent for a specialist herbivore of M. guttatus, the buckeye caterpillar (Junonia coenia Nymphalidae). Given its available genetic resources, numerous, easily accessible natural populations, and patterns of genetic variation highlighted in this research, M. guttatus provides an ideal model system in which to test ecological and evolutionary theories of plant-herbivore interactions.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/s10886-013-0270-7 | DOI Listing |
Ann Bot
December 2024
Department of Biology, Queen's University, Kingston, Ontario, K7L3N6, Canada.
Background And Aims: Seed dispersal impacts plant fitness by shaping the habitat and distribution of offspring, influencing population dynamics and spatial genetic diversity. Whether the evolution of dispersal strategies varies across herbaceous life forms (annual, perennial, clonal) is inconclusive. This study examines how seed dispersal strategies vary between annual and perennial populations of Mimulus guttatus (syn.
View Article and Find Full Text PDFPlants (Basel)
November 2024
Department of Plant and Microbial Biology, North Carolina State University, Raleigh, NC 27695, USA.
The angiosperm seed represents a critical evolutionary breakthrough that has been shown to propel the reproductive success and radiation of flowering plants. Seeds promote the rapid diversification of angiosperms by establishing postzygotic reproductive barriers, such as hybrid seed inviability. While prezygotic barriers to reproduction tend to be transient, postzygotic barriers are often permanent and therefore can play a pivotal role in facilitating speciation.
View Article and Find Full Text PDFFront Plant Sci
November 2024
Department of Botany and Laboratories of Analytical Biology, National Museum of Natural History, Smithsonian Institution, Washington, DC, United States.
The mating system of non-native plant populations plays a role in determining the colonizing success following introduction into locations outside of the native distribution. For plant species capable of mixed-mating, both selfing and outcrossing can be advantageous and promote the establishment, persistence, and spread of newly arrived populations. To investigate how mating systems may contribute to the invasion process we estimated mating system parameters in perennial populations of the model plant species, from its native range (West coast USA), non-native populations that are established but have not become invasive (East coast USA, >50 years), and populations in invasive regions (UK >200 years).
View Article and Find Full Text PDFNat Commun
November 2024
Department of Ecology and Evolutionary Biology, University of Kansas, Lawrence, KS, USA.
Chromosomal inversions have been implicated in a remarkable range of natural phenomena, but it remains unclear how much they contribute to standing genetic variation. Here, we evaluate 64 inversions that segregate within a single natural population of the yellow monkeyflower (Mimulus guttatus). Nucleotide diversity patterns confirm low internal variation for the derived orientation (predicted by recent origin), elevated diversity between orientations (predicted by natural selection), and localized fluctuations (predicted by gene flux).
View Article and Find Full Text PDFFront Plant Sci
August 2024
Department of Ecology and Evolutionary Biology, University of Kansas, Lawrence, KS, United States.
Ecological and evolutionary changes are likely to occur rapidly when outcrossing populations experience pollinator loss. However, the number and identify of plant traits that will respond to this form of selection, as well as the overall predictability of evolutionary responses, remain unclear. We experimentally evolved 20 large replicate populations of for 10 generations under three treatments: pure outcrossing, mixed mating (10% outcrossing) and pure selfing.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!