Cancerous inhibitor of protein phosphatase 2A (CIP2A) is a recently characterized oncoprotein involved in the progression of several human malignancies. The present study aimed to investigate the clinical significance and biological function of CIP2A in astrocytoma. CIP2A expression was analyzed in 135 archived astrocytoma specimens using immunohistochemistry. Of these specimens, 75 cases (55.6%) overexpressed CIP2A. The CIP2A overexpression was observed to be positively correlated with advanced tumor grade (P<0.001). siRNA-mediated knockdown of CIP2A was performed in A172 and U87 cell lines. MTT, colony formation and soft agar colony formation assays and Annexin V/propidium iodide analysis were performed to assess the role of CIP2A in cell proliferation and apoptosis. CIP2A depletion in the astrocytoma cell lines inhibited cell growth, reduced anchorage‑independent cell growth and increased apoptosis. In addition, CIP2A depletion increased caspase‑3 cleavage and downregulated c‑Myc, Bcl‑2 and phospho‑Akt expression. These results validate the role of CIP2A as a clinically relevant oncoprotein and establish CIP2A as a promising therapeutic target of astrocytoma.

Download full-text PDF

Source
http://dx.doi.org/10.3892/mmr.2013.1357DOI Listing

Publication Analysis

Top Keywords

cip2a
6
expression biological
4
biological role
4
role cip2a
4
cip2a human
4
human astrocytoma
4
astrocytoma cancerous
4
cancerous inhibitor
4
inhibitor protein
4
protein phosphatase 2a
4

Similar Publications

Tenuigenin inhibits osteosarcoma growth via CIP2A/PP2A/NF-κB axis.

Cancer Chemother Pharmacol

December 2024

Department of Orthopedics & Soft Tissue, The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University/Hunan Cancer Hospital, No. 283, Tongzipo Road, Yuelu District, Changsha, 410013, Hunan Province, People's Republic of China.

Background: Polygala tenuifolia and its active components have been revealed to possess anti-tumor activities. However, the role of Tenuigenin (TEN), a bioactive ingredient from Polygala tenuifolia, in tumors such as osteosarcoma (OS) remains unclear. The present research intended to explore the efficacy and underlying mechanism of TEN on OS.

View Article and Find Full Text PDF

Double-strand breaks (DSBs) are a formidable threat to genome integrity, potentially leading to cancer and various genetic diseases. The prolonged lifespan of mammalian oocytes increases their susceptibility to DNA damage over time. While somatic cells suppress DSB repair during mitosis, oocytes exhibit a remarkable capacity to repair DSBs during meiotic maturation.

View Article and Find Full Text PDF

CIP2A inhibitors TD52 and Ethoxysanguinarine promote macrophage autophagy and alleviates acute pancreatitis by modulating the AKT-mTOR pathway.

Phytomedicine

November 2024

Department of Hepatobiliary Surgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, 325035, China; Zhejiang Key Laboratory of intelligent Cancer Biomarker Discovery & Translation, The First Affiliated Hospital of Wenzhou Medical University, Zhejiang, 325035, China; Zhejiang-Germany Interdisciplinary Joint Laboratory of Hepatobiliary-Pancreatic Tumor and Bioengineering, Wenzhou, Zhejiang, 325035, China. Electronic address:

Background: Acute pancreatitis (AP) is a prevalent and serious condition within the digestive system, with approximately 20 % to 30 % of cases advancing to severe acute pancreatitis (SAP). During the initial phases of SAP, macrophages are activated in response to the substantial amounts of acinar cell contents and damage-associated molecular patterns (DAMPs) resulting from acinar cell destruction. Subsequently, activated macrophages release a significant array of pro-inflammatory factors that exacerbate the progression of SAP.

View Article and Find Full Text PDF

Oncogenic mutations in KRAS are present in ~95% of patients diagnosed with pancreatic ductal adenocarcinoma (PDAC) and are considered the initiating event of pancreatic intraepithelial neoplasia (PanIN) precursor lesions. While it is well established that KRAS mutations drive the activation of oncogenic kinase cascades during pancreatic oncogenesis, the effects of oncogenic KRAS signaling on regulation of phosphatases during this process is not fully appreciated. Protein Phosphatase 2A (PP2A) has been implicated in suppressing KRAS-driven cellular transformation and low PP2A activity is observed in PDAC cells compared to non-transformed cells, suggesting that suppression of PP2A activity is an important step in the overall development of PDAC.

View Article and Find Full Text PDF

PP2A activation overcomes leptomeningeal dissemination in group 3 medulloblastoma.

J Biol Chem

November 2024

Division of Pediatric Surgery, Department of Surgery, University of Alabama at Birmingham, Birmingham, Alabama, USA. Electronic address:

Leptomeningeal dissemination (LMD) is the primary cause of treatment failure in children with group 3 medulloblastoma (MB). Building on our previous work on protein phosphatase 2A (PP2A) activation in MB, here we present preclinical and molecular data on the effects of two novel classes of PP2A activators on disease processes of LMD in group 3 MB. The PP2A activators used in this study are ATUX-6156 and ATUX-6954 (diarylmethylcycloamine sulfonylureas), and ATUX-1215 and ATUX-5800 (diarylmethyl-4-aminotetrahydropyran-sulfonamides).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!