The limits on maximum information that can be transferred by single neurons may help us to understand how sensory and other information is being processed in the brain. According to the efficient-coding hypothesis (Barlow, Sensory Comunication, MIT press, Cambridge, 1961), neurons are adapted to the statistical properties of the signals to which they are exposed. In this paper we employ methods of information theory to calculate, both exactly (numerically) and approximately, the ultimate limits on reliable information transmission for an empirical neuronal model. We couple information transfer with the metabolic cost of neuronal activity and determine the optimal information-to-metabolic cost ratios. We find that the optimal input distribution is discrete with only six points of support, both with and without a metabolic constraint. However, we also find that many different input distributions achieve mutual information close to capacity, which implies that the precise structure of the capacity-achieving input is of lesser importance than the value of capacity.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s00422-013-0554-6DOI Listing

Publication Analysis

Top Keywords

metabolic cost
8
cost neuronal
8
neuronal empirical
4
empirical stimulus-response
4
stimulus-response model
4
model limits
4
limits maximum
4
maximum transferred
4
transferred single
4
single neurons
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!