Background: Copper oxide (CuO) nanoparticles have attracted huge attention due to catalytic, electric, optical, photonic, textile, nanofluid, and antibacterial activity depending on the size, shape, and neighboring medium. In the present paper, we synthesized CuO nanoparticles using gum karaya, a natural nontoxic hydrocolloid, by green technology and explored its potential antibacterial application.
Methods: The CuO nanoparticles were synthesized by a colloid-thermal synthesis process. The mixture contained various concentrations of CuCl2 • 2H2O (1 mM, 2 mM, and 3 mM) and gum karaya (10 mg/mL) and was kept at 75°C at 250 rpm for 1 hour in an orbital shaker. The synthesized CuO was purified and dried to obtain different sizes of the CuO nanoparticles. The well diffusion method was used to study the antibacterial activity of the synthesized CuO nanoparticles. The zone of inhibition, minimum inhibitory concentration, and minimum bactericidal concentration were determined by the broth microdilution method recommended by the Clinical and Laboratory Standards Institute.
Results: Scanning electron microscopy analysis showed CuO nanoparticles evenly distributed on the surface of the gum matrix. X-ray diffraction of the synthesized nanoparticles indicates the formation of single-phase CuO with a monoclinic structure. The Fourier transform infrared spectroscopy peak at 525 cm(-1) should be a stretching of CuO, which matches up to the B2u mode. The peaks at 525 cm(-1) and 580 cm(-1) indicated the formation of CuO nanostructure. Transmission electron microscope analyses revealed CuO nanoparticles of 4.8 ± 1.6 nm, 5.5 ± 2.5 nm, and 7.8 ± 2.3 nm sizes were synthesized with various concentrations of CuCl2 • 2H2O (1 mM, 2 mM, and 3 mM). X-ray photoelectron spectroscopy profiles indicated that the O 1s and Cu 2p peak corresponding to the CuO nanoparticles were observed. The antibacterial activity of the synthesized nanoparticles was tested against Gram-negative and positive cultures.
Conclusion: The formed CuO nanoparticles are small in size (4.8 ± 1.6 nm), highly stable, and have significant antibacterial action on both the Gram classes of bacteria compared to larger sizes of synthesized CuO (7.8 ± 2.3 nm) nanoparticles. The smaller size of the CuO nanoparticles (4.8 ± 1.6 nm) was found to be yielding a maximum zone of inhibition compared to the larger size of synthesized CuO nanoparticles (7.8 ± 2.3 nm). The results also indicate that increase in precursor concentration enhances an increase in particle size, as well as the morphology of synthesized CuO nanoparticles.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3589119 | PMC |
http://dx.doi.org/10.2147/IJN.S40599 | DOI Listing |
Ultrastruct Pathol
January 2025
Department of Medical Histology and Cell Biology, Faculty of Medicine, Mansoura University, Mansoura, Egypt.
There is an important concern about the potential health and environmental risks that may develop due to exposure to copper oxide nanoparticles (CuO-NPs). Selenium is an essential trace element. It supports the expression of a variety of selenoproteins.
View Article and Find Full Text PDFMolecules
December 2024
Molecular Sciences Institute, School of Chemistry, University of the Witwatersrand, Braamfontein 2050, South Africa.
The demand for reliable, cost-effective, room temperature gas sensors with high sensitivity, selectivity, and short response times is rising, particularly for environmental monitoring, biomedicine, and agriculture. In this study, corncob waste-derived activated carbon (ACC) was combined with CuO nanoparticles and polyvinyl alcohol (PVA) to fabricate ACC/PVA/CuO composites with CuO loadings of 5, 10, and 15 wt.%.
View Article and Find Full Text PDFWorld J Microbiol Biotechnol
January 2025
Department of Zoology, College of Science, King Saud University, 11451, Riyadh, Saudi Arabia.
Utilizing metal/nanoparticle (NP)- tolerant plant growth-promoting rhizobacteria (PGPR) is a sustainable and eco-friendly approach for remediation of NP-induced phytotoxicity. Here, Pisum sativum (L.) plants co-cultivated with different CuO-NP concentrations exhibited reduced growth, leaf pigments, yield attributes, and increased oxidative stress levels.
View Article and Find Full Text PDFNanomaterials (Basel)
December 2024
Institute of Microbiology and Biotechnology, Technical University of Moldova, MD 2028 Chisinau, Moldova.
(1) Background: The widespread use of nanoparticles (NPs) implies their inevitable contact with living organisms, including aquatic microorganisms, making it essential to understand the effects and consequences of this interaction. Understanding the adaptive responses and biochemical changes in microalgae and cyanobacteria under NP-induced stress is essential for developing biotechnological strategies that optimize biomolecule production while minimizing potential toxicity. This study aimed to evaluate the interactions between various potentially toxic nanoparticles and the cyanobacterial strain , focusing on the biological adaptations and biochemical mechanisms that enable the organism to withstand xenobiotic exposure.
View Article and Find Full Text PDFNanoscale
January 2025
CNR - Istituto Nanoscienze, Modena, Italy.
Copper nanoparticles (NPs) can be coupled with cuprous oxide, combining photoelectrocatalytic properties with a broad-range optical absorption. In the present study, we aimed to correlate changes in morphology, electronic structure and plasmonic properties of Cu NPs at different stages of oxidation. We demonstrated the ability to monitor the oxidation of NPs at the nanometric level using STEM-EELS spectral maps, which were analyzed with machine learning algorithms.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!