Two families of E3 ubiquitin ligases are prominent in cell cycle regulation and mediate the timely and precise ubiquitin-proteasome-dependent degradation of key cell cycle proteins: the SCF (Skp1/Cul1/F-box protein) complex and the APC/C (anaphase promoting complex or cyclosome). While certain SCF ligases drive cell cycle progression throughout the cell cycle, APC/C (in complex with either of two substrate recruiting proteins: Cdc20 and Cdh1) orchestrates exit from mitosis (APC/C(Cdc20)) and establishes a stable G1 phase (APC/C(Cdh1)). Upon DNA damage or perturbation of the normal cell cycle, both ligases are involved in checkpoint activation. Mechanistic insight into these processes has significantly improved over the last ten years, largely due to a better understanding of APC/C and the functional characterization of multiple F-box proteins, the variable substrate recruiting components of SCF ligases. Here, we review the role of SCF- and APC/C-mediated ubiquitylation in the normal and perturbed cell cycle and discuss potential clinical implications of SCF and APC/C functions. This article is part of a Special Issue entitled: Ubiquitin-Proteasome System. Guest Editors: Thomas Sommer and Dieter H. Wolf.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3694769 | PMC |
http://dx.doi.org/10.1016/j.bbamcr.2013.02.028 | DOI Listing |
J Exp Clin Cancer Res
January 2025
Hepatology Laboratory, Solid Tumors Program, CIMA, CCUN, University of Navarra, Pamplona, Spain.
Background: Pancreatic ductal adenocarcinoma (PDAC) is a highly aggressive cancer with limited treatment options and a poor prognosis. The critical role of epigenetic alterations such as changes in DNA methylation, histones modifications, and chromatin remodeling, in pancreatic tumors progression is becoming increasingly recognized. Moreover, in PDAC these aberrant epigenetic mechanisms can also limit therapy efficacy.
View Article and Find Full Text PDFDiagn Pathol
January 2025
Laboratoire Hospitalier Universitaire de Bruxelles - Universitair Laboratorium Brussel, Université Libre de Bruxelles LHUB-ULB, Brussels, Belgium.
Background: Synchronous malignant histiocytoses are rare conditions that occur concurrently with another hematologic neoplasm. Most reported cases are associated with B-cell lymphoproliferative disorders, while associations with T-cell hemopathies are less common. These two diseases may share mutations and/or cytogenetic anomalies, which can lead to malignant proliferations.
View Article and Find Full Text PDFBMC Cancer
January 2025
Jiangxi Provincial Key Laboratory of Child Development and Genetics, Jiangxi Provincial Children's Hospital, No. 122 of YangMing Road, DongHu District, NanChang, 330006, China.
Background: Hepatocellular carcinoma (HCC) is a prevalent primary liver malignancy and a leading cause of cancer-related mortality worldwide. Despite advancements in therapeutic strategies, the 5-year survival rate for individuals undergoing curative resection remains between 10% and 15%. Consequently, identifying molecular targets that specifically inhibit the proliferation and metastasis of HCC cells is critical for improving treatment outcomes.
View Article and Find Full Text PDFBMC Plant Biol
January 2025
Bioinformatics Multidisciplinary Environment, IMD, Universidade Federal Do Rio Grande Do Norte, Natal, Brazil.
Significant changes in the proteome highlight essential metabolic adaptations for development and oxidative signaling induced by the treatment of young sugarcane plants with hydrogen peroxide. These adaptations suggest that hydrogen peroxide acts not only as a stressor but primarily as a signaling molecule, triggering specific metabolic pathways that regulate growth and plant resilience. Sugarcane is a crucial crop for sugar and ethanol production, often influenced by environmental signals.
View Article and Find Full Text PDFCommun Biol
January 2025
Institut Pasteur, CNRS UMR 3528, Université Paris Cité, Structural Microbiology Unit, F-75015, Paris, France.
MoeA, also known as gephyrin in higher eukaryotes, is an enzyme essential for molybdenum cofactor (Moco) biosynthesis and involved in GABA and GlyR receptor clustering at the synapse in animals. We recently discovered that Actinobacteria have a repurposed version of MoeA (Glp) linked to bacterial cell division. Since MoeA exists in all domains of life, our study explores how it gained multifunctionality over time.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!