Spatial and functional organization of mitochondrial protein network.

Sci Rep

School of Interdisciplinary Bioscience and Bioengineering, Pohang University of Science and Technology, San 31, Hyoja-dong, Nam-gu, Pohang, Gyeongbuk, Korea, 790-784.

Published: August 2013

AI Article Synopsis

  • Understanding the spatial arrangement of mitochondrial proteins can improve our knowledge of how mitochondria work and their link to diseases.
  • Most mitochondrial proteins lack information on their specific locations and roles in mitochondrial diseases.
  • The study used a Mitochondrial Protein Functional (MPF) network to map these proteins' positions, revealing insights into their functions and potential disease-related genes.

Article Abstract

Characterizing the spatial organization of the human mitochondrial proteome will enhance our understanding of mitochondrial functions at the molecular level and provide key insight into protein-disease associations. However, the sub-organellar location and possible association with mitochondrial diseases are not annotated for most mitochondrial proteins. Here, we characterized the functional and spatial organization of mitochondrial proteins by assessing their position in the Mitochondrial Protein Functional (MPF) network. Network position was assigned to the MPF network and facilitated the determination of sub-organellar location and functional organization of mitochondrial proteins. Moreover, network position successfully identified candidate disease genes of several mitochondrial disorders. Thus, our data support the use of network position as a novel method to explore the molecular function and pathogenesis of mitochondrial proteins.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3590558PMC
http://dx.doi.org/10.1038/srep01403DOI Listing

Publication Analysis

Top Keywords

mitochondrial proteins
16
organization mitochondrial
12
network position
12
mitochondrial
10
functional organization
8
mitochondrial protein
8
spatial organization
8
sub-organellar location
8
mpf network
8
network
6

Similar Publications

Long non-coding RNA XR008038 promotes the myocardial ischemia/reperfusion injury development through increasing the expressions of galectin-3.

Int J Cardiol

January 2025

Department of Intensive Care Unit, Hangzhou Hospital of Traditional Chinese Medicine (Dingqiao District), Guangxing Affiliated Hospital of Zhejiang Chinese Medical University, No.453 Tiyuchang Road, Hangzhou, Zhejiang 310013, China. Electronic address:

Background: Myocardial ischemia/reperfusion (I/R) injury is a common pathophysiological change after myocardial reperfusion therapy. Recent research confirmed that long non-coding RNA (IncRNAs) played an important role in many cardiovascular diseases. This study was carried out to explore the role of lncRNA XR008038 in the I/R progression.

View Article and Find Full Text PDF

Cell-free hemoglobin released from hemolysis induces programmed cell death through iron overload and oxidative stress in grass carp (Ctenopharyngodon idella).

Fish Shellfish Immunol

January 2025

Guangdong Provincial Water Environment and Aquatic Products Security Engineering Technology Research Center, Guangzhou Key Laboratory of Aquatic Animal Diseases and Waterfowl Breeding, College of Animal Sciences and Technology, Zhongkai University of Agriculture and Engineering, Guangzhou, Guangdong Province 510222, China. Electronic address:

Intravascular hemolysis releases hemoglobin (Hb) from red blood cells under specific conditions, yet the effect of hemolysis in aquaculture systems remain poorly understood. In this study, a continuous hemolysis model for grass carp was established by injection of phenylhydrazine (PHZ) to investigate the mechanistic impacts of sustained hemolysis. PHZ-induced hemolysis altered liver color, and subsequent hematoxylin and eosin staining revealed substantial Hb accumulation in the head kidney, accompanied by inflammatory cell infiltration and vacuolization in liver tissue.

View Article and Find Full Text PDF

Hederagenin ameliorates ferroptosis-induced damage by regulating PPARα/Nrf2/GPX4 signaling pathway in HT22 cells: An in vitro and in silico study.

Bioorg Chem

December 2024

Institute of Geriatrics, The 2nd Medical Center, China National Clinical Research Center for Geriatric Disease, Chinese People's Liberation Army General Hospital, Beijing, China. Electronic address:

Background: Hederagenin (HG), derived from ivy seeds, is known to offer protection against Alzheimer's disease (AD). However, the specific molecular pathways through which it counters ferroptosis-induced neurotoxicity are not fully elucidated. This investigation seeks to delineate the processes by which HG mitigates neurotoxic effects in HT22 cells subjected to glutamate (Glu)-induced ferroptosis.

View Article and Find Full Text PDF

Phosphine (PH) fumigation is widely used to control insect pests in stored products globally. However, intensive PH use has led to the emergence of significant resistance in target insects. To address this issue, this study investigated PH resistance mechanisms by conducting both qualitative and quantitative proteomic analyses on the whole proteome of a PH-resistant Tribolium castaneum strain (AUS-07) using LC-MS/MS.

View Article and Find Full Text PDF

Purpose: The incidence of vascular dementia (VaD), as one of the main types of dementia in old age, has been increasing year by year, and exploring its pathogenesis and seeking practical and effective treatment methods are undoubtedly the key to solving this problem. Phosphoglycerate translocase 5 (PGAM5), as a crossroads of multiple signaling pathways, can lead to mitochondrial fission, which in turn triggers the onset and development of necroptosis, and thus PGAM5 may be a novel target for the prevention and treatment of vascular dementia.

Methods: Animal model of vascular dementia was established by Two-vessel occlusion (2-VO) method, and cellular model of vascular dementia was established by oxygen glucose deprivation (OGD) method.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!