The trace element selenium (Se) is required for the biosynthesis of selenocysteine (Sec), the 21st amino acid in the genetic code, but its role in the ecology of harmful algal blooms (HABs) is unknown. Here, we examined the role of Se in the biology and ecology of the harmful pelagophyte, Aureococcus anophagefferens, through cell culture, genomic analyses, and ecosystem studies. This organism has the largest and the most diverse selenoproteome identified to date that consists of at least 59 selenoproteins, including known eukaryotic selenoproteins, selenoproteins previously only detected in bacteria, and novel selenoproteins. The A. anophagefferens selenoproteome was dominated by the thioredoxin fold proteins and oxidoreductase functions were assigned to the majority of detected selenoproteins. Insertion of Sec in these proteins was supported by a unique Sec insertion sequence. Se was required for the growth of A. anophagefferens as cultures grew maximally at nanomolar Se concentrations. In a coastal ecosystem, dissolved Se concentrations were elevated before and after A. anophagefferens blooms, but were reduced by >95% during the peak of blooms to 0.05 nM. Consistent with this pattern, enrichment of seawater with selenite before and after a bloom did not affect the growth of A. anophagefferens, but enrichment during the peak of the bloom significantly increased population growth rates. These findings demonstrate that Se inventories, which can be anthropogenically enriched, can support proliferation of HABs, such as A. anophagefferens through its synthesis of a large arsenal of Se-dependent oxidoreductases that fine-tune cellular redox homeostasis.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3695291PMC
http://dx.doi.org/10.1038/ismej.2013.25DOI Listing

Publication Analysis

Top Keywords

ecology harmful
12
harmful pelagophyte
8
pelagophyte aureococcus
8
aureococcus anophagefferens
8
growth anophagefferens
8
anophagefferens
7
selenoproteins
5
central role
4
role selenium
4
selenium biochemistry
4

Similar Publications

Nine homologous Cold Shock Proteins (Csps) have been recognized in the E.coli Cold Shock Domain gene family. These Csps function as RNA chaperones.

View Article and Find Full Text PDF

Background: Ecotoxicology is essential for the evaluation and comprehension of the effects of emergency pollutants (EP) such as heavy metal ions on the natural environment. EPs pose a substantial threat to the health of humans and the proper functioning of the global ecosystem. The primary concern is the exposure of humans and animals to heavy metal ions through contaminated water.

View Article and Find Full Text PDF

Evaluating the Effects of Flavonoids on Insects: Implications for Managing Pests Without Harming Beneficials.

Insects

December 2024

Biological Control of Pests Research Unit, Agricultural Research Service, United States Department of Agriculture, Stoneville, MS 38776, USA.

Flavonoids have multiple functions, including host-plant defense against attacks from herbivorous insects. This manuscript reviewed and analyzed the scientific literature to test the hypothesis that flavonoids can be utilized to manage pests without causing significant harm to beneficials. The methodology involved using recognized literature databases, e.

View Article and Find Full Text PDF

Background: Ticks (Acari: Ixodida) pose a serious medical and veterinary threat as vectors of tick-borne pathogens. The wide variety of tick repellents available on the market primarily consist of synthetic preparations that may disrupt the ecological balance and accumulate in the environment, leading to harmful effects on humans and animals. The aim of the study was to develop an ecological preparation based on natural raw materials (biopolymers) with the addition of a mixture of essential oils that act as tick repellents.

View Article and Find Full Text PDF

Viability and Motility of Under Elevated Martian Salt Stresses.

Life (Basel)

November 2024

Astrobiology Group, Center of Astronomy and Astrophysics, Technical University Berlin, 10623 Berlin, Germany.

This study investigates the effects of three Martian-relevant salts-sodium chlorate, sodium perchlorate, and sodium chloride-on the viability and motility of , a model organism for understanding microbial responses to environmental stress. These salts are abundant on Mars and play a crucial role in forming brines, one of the few sources of stable liquid water on the planet. We analyze the survivability under different salt concentrations using colony plating.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!