Single epitaxially-grown semiconductor quantum dots have great potential as single photon sources for photonic quantum technologies, though in practice devices often exhibit nonideal behavior. Here, we demonstrate that amplitude modulation can improve the performance of quantum-dot-based sources. Starting with a bright source consisting of a single quantum dot in a fiber-coupled microdisk cavity, we use synchronized amplitude modulation to temporally filter the emitted light. We observe that the single photon purity, temporal overlap between successive emission events, and indistinguishability can be greatly improved with this technique. As this method can be applied to any triggered single photon source, independent of geometry and after device fabrication, it is a flexible approach to improve the performance of systems based on single solid-state quantum emitters, which often suffer from excess dephasing and multi-photon background emission.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3590556 | PMC |
http://dx.doi.org/10.1038/srep01397 | DOI Listing |
Bioorg Med Chem
January 2025
Division of Nuclear Medicine, Department of Radiology, Faculty of Medicine, Chulalongkorn University, Bangkok 10330, Thailand. Electronic address:
Technetium-99m (Tc-99m) is the most employed radionuclide in nuclear imaging diagnostics worldwide for many diseases. The ideal physiochemical properties of Tc-99m (such as half-life and pure gamma energy) make it favorable for Single Photon Emission Computed Tomography (SPECT). In this study, we aim to expand the utilization of Tc-99m radiopharmaceutical toward prostate cancer diagnostics which is currently no FDA approved products and has been intensively examined for a potential candidate.
View Article and Find Full Text PDFNat Commun
January 2025
School of Applied and Engineering Physics, Cornell University, Ithaca, NY, USA.
Energy efficiency in computation is ultimately limited by noise, with quantum limits setting the fundamental noise floor. Analog physical neural networks hold promise for improved energy efficiency compared to digital electronic neural networks. However, they are typically operated in a relatively high-power regime so that the signal-to-noise ratio (SNR) is large (>10), and the noise can be treated as a perturbation.
View Article and Find Full Text PDFCardiovasc Revasc Med
December 2024
Department of Cardiology, Tel Aviv Sourasky Medical Center, affiliated with the School of Medicine, Tel Aviv University, Israel.
Background: Angina with non-obstructive coronary artery disease (ANOCA) is commonly observed in patients with stable angina undergoing coronary angiography. Current guidelines recommend non-invasive stress testing as the first step in diagnosing coronary microvascular disease (CMD). This study aims to evaluate the diagnostic value of non-invasive stress testing in patients invasively diagnosed with CMD.
View Article and Find Full Text PDFPhys Rev Lett
December 2024
Department of Physics and Astronomy, University of Rochester, Rochester, New York 14627, USA.
Phys Rev Lett
December 2024
Center for Quantum Information, Korea Institute of Science and Technology (KIST), Seoul 02792, Korea and Division of Quantum Information Technology, KIST School, Korea University of Science and Technology, Seoul 02792, Korea.
High-dimensional multipartite entanglement plays a crucial role in quantum information science. However, existing schemes for generating such entanglement become complex and costly as the dimension of quantum units increases. In this Letter, we overcome the limitation by proposing a significantly enhanced linear optical heralded scheme that generates the d-level N-partite Greenberger-Horne-Zeilinger (GHZ) state with single-photon sources and linear operations.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!