Scanning electrochemical microscopy (SECM) is useful for analyzing various cellular responses. We have combined a micropipette (MP) with SECM to perform quantitative solution delivery to single cells. In this system, since the concentrations of electrochemical mediators are changed by the volume of solution delivered from the MP, we constructed a feedback control system to regulate MP delivery by SECM-detected signals. Cellular responses induced by MP delivery could be monitored by the SECM, and cell apoptosis was successfully detected by adding a kinase inhibitor of two orders of magnitude less than what is required in the conventional method. The SECM-based MP can activate a target cell, requiring a minimal amount of agent, and can continually examine target cell responses. This system improves the accuracy of delivery from the MP and is useful for single-cell analysis.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.bioelechem.2013.01.004DOI Listing

Publication Analysis

Top Keywords

scanning electrochemical
8
cellular responses
8
target cell
8
development scanning
4
electrochemical microscopy-based
4
microscopy-based micropipette
4
micropipette application
4
application analysis
4
analysis topographic
4
topographic change
4

Similar Publications

Isoelectric Point of Metal Oxide Films Formed by Anodization.

Langmuir

January 2025

Chemistry and Structure of novel Materials, University of Siegen, Paul-Bonatz Strasse 9-11, 57068 Siegen, Germany.

The surface charge of metal oxides is an important property that significantly contributes to a wide range of phenomena, including adsorption, catalysis, and material science. The surface charge can be predicted by determining the isoelectric point (IEP) of a material and the pH of a solution. Although there have been several studies of the IEP of metal oxide (nano)particles, only a few have reported the IEP of metal oxide films.

View Article and Find Full Text PDF

The misuse and uncontrolled release of pharmaceuticals into water bodies lead to environmental challenges and the development of resistance, thereby reducing their effectiveness. To mitigate these problems, it is essential to identify pharmaceuticals in water sources and eliminate them prior to human use. This study presents the designing of a novel nanosensor for the detection of the antibiotic Cefoperazone Sodium Sulbactam Sodium (CSSS).

View Article and Find Full Text PDF

Herein, first, MIL-125 samples were synthesized via a hydrothermal method. Then, Ag species were doping on the surface of MIL-125 samples via the photolysis of silver nitrate. Finally, the Z-scheme MIL-125/Ag/BiOBr composite was synthesized via a directed liquid assembly method.

View Article and Find Full Text PDF

Poor wear- and corrosion-resistance of 316L SS implants are critical problems in orthopedic implants. This study aims to improve the wear- and corrosion-resistance of 316L SS through surface coating. In this study, a bilayer composite coating consisting of polyether ether ketone (PEEK) as the first layer, and titania (TiO)- and Cu-doped mesoporous bioactive glass nanoparticles (Cu-MBGNs) were deposited as the second layer on a 316L SS electrophoretic deposition (EPD).

View Article and Find Full Text PDF

Radially Distributed Electron Transfer on Single-Crystalline Surface of Gold Microplates.

ACS Nano

January 2025

State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Chemistry and Chemical Engineering, Donghua University, Shanghai 201620, China.

Electron transfer is ubiquitous in many chemical reactions and biological phenomena; however, the spatial heterogeneities of electron transfer kinetics in electrocatalysis are so far insufficiently resolved. Measuring and understanding the localized electron transfer are crucial to deciphering the intrinsic activity of electrocatalysts and to achieving further improvements in performance. By using scanning electrochemical probe microscopy to spatially resolve redox electrochemistry across the single-crystalline surface of gold microplates, we discover an intriguing radially distributed electron transfer pattern, where the kinetics around the periphery region are significantly higher than those at the central region, regardless of the redox reaction types.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!