We describe the mechanical defibrillation of bacterial cellulose (BC) followed by the dry-cast generation of reconstituted BC films (RBC). Xyloglucan (XGT), extracted from tamarind seeds, was incorporated into the defibrillated cellulose at various compositions, and new films were created using the same process. Microscopy and contact angle analyses of films revealed an increase in the microfibre adhesion, a reduced polydispersity in the diameters of the microfibrils and increased hydrophobic behaviour as a function of %XGT. X-ray diffraction analysis revealed changes to the crystallographic planes of the RBC and the biocomposite films with preferential orientation along the (110) plane. Compared with BC, RBC/XGT biocomposite with 10% XGT exhibited improvement in its thermal properties and in Young's modulus. These results indicated a reorganisation of the microfibres with mechanical treatment, which when combined with hydrocolloids, can create cellulose-based materials that could be applied as scaffolding for tissue engineering and drug release.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.carbpol.2012.04.062 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!