Background: Myocardial contractile depression develops 4 to 24 h after major burn injury. We have reported previously that in a rat burn injury model (≈40% of total body surface area burn), mesenteric lymph duct ligation (LDL) prior to burn prevented myocardial dysfunction. However, the underlying cellular and molecular mechanisms are not well understood.

Materials And Methods: Left ventricular myocytes were isolated from sham burn (control), sham burn with LDL (sham + LDL), burn, and burn with LDL (burn + LDL) rats at 4 and 24 h after burn or sham burn. Electrophysiological techniques were used to study myocyte size, contractility and L-type Ca2+ channel current (ICa). Further studies examined changes in the messenger RNA expression levels of pore-forming subunit of the L-type Ca(2+) channel, α1C, and its auxiliary subunits, β1, β2, β3, and α2δ1, which modulate the abundance of the ICa in post-burn hearts.

Results: Depressed myocyte contractility (≈20%) developed during 4 to 24 h post-burn compared with control, sham + LDL, or burn + LDL groups, a pattern of changes consistent with whole heart studies. There was no significant alteration in myocyte size. The ICa density was significantly decreased (≈30%) at 24 h post-burn, whereas the messenger RNA expression levels of Ca(2+) channel gene were not significantly altered at 4 and 24 h after burn injury.

Conclusions: These results suggest that the post-burn contractile phenotype in vivo was also present in isolated myocytes in vitro, but cellular remodeling was not a major factor. The results also suggest that changes in ICa regulation, but not from Ca(2+) channel gene modification, may be a key element involved in post-burn contractile depression and the beneficial effects of LDL.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3676716PMC
http://dx.doi.org/10.1016/j.jss.2013.01.065DOI Listing

Publication Analysis

Top Keywords

ca2+ channel
16
sham burn
12
burn
11
mesenteric lymph
8
lymph duct
8
duct ligation
8
contractile depression
8
burn injury
8
burn ldl
8
myocyte size
8

Similar Publications

Piperazine-based P2X4 receptor antagonists.

Arch Pharm (Weinheim)

January 2025

European Institute for Molecular Imaging (EIMI), University of Muenster, Muenster, Germany.

The P2X4 receptor (P2X4R), a ligand-gated ion channel activated by ATP, plays a critical role in neuroinflammation, chronic pain, and cancer progression, making it a promising therapeutic target. In this study, we explored the design and synthesis of piperazine-based P2X4R antagonists, building on the structural framework of paroxetine. A series of over 35 compounds were synthesized to investigate structure-activity relationships (SARs) in a Ca²⁺-flux assay for P2X4R antagonistic activity.

View Article and Find Full Text PDF

Montelukast potentiates the relaxing effect of nifedipine in the porcine myometrium.

Pol J Vet Sci

September 2024

Department of Pharmacology and Toxicology, Faculty of Veterinary Medicine, University of Warmia and Mazury in Olsztyn, Oczapowskiego 13, 10-718 Olsztyn, Poland.

This study analysed the influence of montelukast (MON), a cysteinyl leukotriene receptor antagonist, and nifedipine, an L-type voltage-gated Ca2+ channel blocker, on the contractility of the porcine uterine smooth muscle. Myometrial strips were collected from the sexually immature (n=8), cyclic (12-14 days of the oestrous cycle; n=8) and pregnant (27-28 days of pregnancy; n=8) gilts and stimulated with a) MON or nifedipine at concentrations of 10-8-10-4 M and b) increasing concentrations of nifedipine after previous administration of MON at a concentration of 10-4 M. The changes in the tension, amplitude and frequency of contractions were determined with the Hugo Sachs Elektronik equipment for measuring isometric contractions.

View Article and Find Full Text PDF

Objective: Ca overload of muscle fibers is one of the factors that secondarily aggravate the development of Duchenne muscular dystrophy (DMD). The purpose of this study is to evaluate the effects of the Ca channel modulator 2-aminoethoxydiphenyl borate (APB) on skeletal muscle pathology in dystrophin-deficient mice.

Methods: Mice were randomly divided into six groups: wild type (WT), WT+3 mg/kg APB, WT+10 mg/kg APB, , +3 mg/kg APB, +10 mg/kg APB.

View Article and Find Full Text PDF

Transient Receptor Potential Ankyrin 1 (TRPA1) Mediated LPS-Induced Inflammation in Periodontal Ligament Stem Cells by Inhibiting the Phosphorylation of JNK.

Stem Cells Int

December 2024

State Key Laboratory of Oral and Maxillofacial Reconstruction and Regeneration, National Clinical Research Center for Oral Diseases, Shaanxi Clinical Research Center for Oral Diseases, Department of Orthodontics, School of Stomatology, The Fourth Military Medical University, No. 169 Changle West Road, Xi'an 710032, China.

Transient receptor potential ankyrin 1 (TRPA1) molecule is an important type of transient receptor potential (TRP) cation channels, which can cause extracellular Ca to flow into cells after activation. TRPA1 plays an important role in acute and chronic pain, inflammation, kidney disease, cough and asthma, osteoarthritis, cardiovascular disease, obesity, diabetes, and other diseases. In this study, the expression of interleukin (IL)-1, IL-6, and IL-8 in periodontal ligament stem cells (PDLSCs) treated by lipopolysaccharide (LPS) and the effect of LPS on PDLSCS proliferation were detected.

View Article and Find Full Text PDF

Revisiting astrocytic calcium signaling in the brain.

Fundam Res

November 2024

Department of Pharmacology, Jiangsu Provincial Key Laboratory of Critical Care Medicine, School of Medicine, Southeast University, Nanjing 210009, China.

Astrocytes, characterized by complex spongiform morphology, participate in various physiological processes, and abnormal changes in their calcium (Ca) signaling are implicated in central nervous system disorders. However, medications targeting the control of Ca have fallen short of the anticipated therapeutic outcomes in clinical applications. This underscores the fact that our comprehension of this intricate regulation of calcium ions remains considerably incomplete.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!