We report on the design and performance of a cryogenic (300 mK) near-field scanning microwave microscope. It uses a microwave resonator as the near-field sensor, operating at a frequency of 6 GHz and microwave probing amplitudes down to 100 μV, approaching low enough photon population (N ∼ 1000) of the resonator such that coherent quantum manipulation becomes feasible. The resonator is made out of a miniaturized distributed fractal superconducting circuit that is integrated with the probing tip, micromachined to be compact enough such that it can be mounted directly on a quartz tuning-fork, and used for parallel operation as an atomic force microscope (AFM). The resonator is magnetically coupled to a transmission line for readout, and to achieve enhanced sensitivity we employ a Pound-Drever-Hall measurement scheme to lock to the resonance frequency. We achieve a well localized near-field around the tip such that the microwave resolution is comparable to the AFM resolution, and a capacitive sensitivity down to 6.4 × 10(-20) F/Hz, limited by mechanical noise. We believe that the results presented here are a significant step towards probing quantum systems at the nanoscale using near-field scanning microwave microscopy.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1063/1.4792381 | DOI Listing |
Sci Rep
January 2025
Terahertz Research Center, School of Electronic Science and Engineering, University of Electronic Science and Technology of China, Chengdu, 610054, China.
Strong light-matter coupling occurs when the rate of energy exchange between the electromagnetic mode and the molecular ensemble exceeds the competitive dissipation process. Coupled photon molecules with near-field light-matter interactions may produce new hybridized states when they reach the strong coupling region. Tunable Terahertz (THz) meta materials can be used to design sensors, optical modulators, etc.
View Article and Find Full Text PDFSensors (Basel)
January 2025
Huawei Technologies Co., Ltd., Chengdu 610000, China.
Metasurface-based imaging is attractive due to its low hardware costs and system complexity. However, most of the current metasurface-based imaging systems require stochastic wavefront modulation, complex computational post-processing, and are restricted to 2D imaging. To overcome these limitations, we propose a scanning virtual aperture imaging system.
View Article and Find Full Text PDFChem Biomed Imaging
December 2024
Experimental Solid State Physics Group, Department of Physics, Imperial College, Exhibition Road, SW72AZ London, U.K.
Mesoporous silica nanoparticles (MSNPs) are promising nanomedicine vehicles due to their biocompatibility and ability to carry large cargoes. It is critical in nanomedicine development to be able to map their uptake in cells, including distinguishing surface associated MSNPs from those that are embedded or internalized into cells. Conventional nanoscale imaging techniques, such as electron and fluorescence microscopies, however, generally require the use of stains and labels to image both the biological material and the nanomedicines, which can interfere with the biological processes at play.
View Article and Find Full Text PDFBiotechnol Adv
December 2024
Center of Super-Resolution Optics and Chongqing Engineering Research Center of High-Resolution and Three-Dimensional Dynamic Imaging Technology, Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, Chongqing 400714, China; Chongqing School, University of Chinese Academy of Sciences, Chongqing 400714, China. Electronic address:
Terahertz (THz) radiation is widely recognized as a non-destructive, label-free, and highly- sensitive tool for biomedical detections. Nevertheless, its application in precision biomedical fields faces challenges due to poor spatial resolution caused by intrinsically long wavelength characteristics. THz scanning near-field optical microscopy (THz-SNOM), which surpasses the Rayleigh criterion, offers micrometer and nanometer-scale spatial resolution, making it possible to perform precise bioinspection with THz imaging.
View Article and Find Full Text PDFNano Lett
January 2025
Department of Chemistry and Biochemistry, School of Advanced Science and Engineering, Waseda University, 3-4-1, Okubo, Shinjuku, Tokyo, 169-8555, Japan.
In this study, we examine the three-dimensional chiral optical field in the vicinity of a gold nanoplate using aperture-type scanning near-field optical microscopy. Near-field imaging indicates that the chiral optical field shows a unique spatial distribution and depends on the incident polarization. We also evaluate the modal dependence of chiral optical fields, which reveals that the plasmon mode with E symmetry contributes substantially to the chiral optical field while that with A symmetry contributes little because of the high spatial symmetry.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!