The transport properties in the dilute gas limit have been calculated by the classical-trajectory method for a gas consisting of chain-like molecules. The molecules were modelled as rigid chains consisting of spherical segments that interact through a combination of site-site Lennard-Jones 12-6 potentials. Results are reported for shear viscosity, self-diffusion, and thermal conductivity for chains consisting of 1, 2, 3, 4, 5, 6, 7, 8, 10, 13, and 16 segments in the reduced temperature range of 0.3-50. The results indicate that the transport properties increase with temperature and decrease with chain length. At high temperatures the dependence of the transport properties is governed effectively by the repulsive part of the potential. No simple scaling with chain length has been observed. The higher order correction factors are larger than observed for real molecules so far, reaching asymptotic values of 1.019-1.033 and 1.060-1.072 for viscosity and thermal conductivity, respectively. The dominant contribution comes from the angular momentum coupling. The agreement with molecular dynamics calculations for viscosity is within the estimated accuracy of the two methods for shorter chains. However, for longer chains differences of up to 7% are observed.

Download full-text PDF

Source
http://dx.doi.org/10.1063/1.4793221DOI Listing

Publication Analysis

Top Keywords

transport properties
16
properties dilute
8
dilute gas
8
gas consisting
8
chains consisting
8
thermal conductivity
8
chain length
8
chains
5
calculation transport
4
properties
4

Similar Publications

A Structurally Simple Polymer Donor Enables High-Efficiency Organic Solar Cells with Minimal Energy Losses.

Angew Chem Int Ed Engl

March 2025

South China University of Technology, State Key Laboratory of Luminescent Materials and Devices, Wushan Road 381, 510640, Guangzhou, CHINA.

Energy loss (Eloss) between optical energy gap (Eg) and open-circuit voltage (eVoc) sets efficiency upper limits for organic solar cells (OSCs). Nevertheless, further breaking the limit of Eloss in OSCs is challenging, especially via structurally simple materials in binary OSCs. Herein, a structurally simple non-halogenated polymer donor, namely PBDCT, is developed for realizing high-efficiency OSCs with record-breaking Eloss.

View Article and Find Full Text PDF

Phosphating CoMoO-Modified Hematite-Based Photoanode Enhances Surface Charge Transfer and Reaction Activity for Efficient Photoelectrochemical Water Oxidation.

Langmuir

March 2025

Key Laboratory of Low Carbon Energy and Chemical Engineering of Gansu Province. School of Petrochemical Technology, Lanzhou University of Technology, Langongping Road 287, Lanzhou 730050, P. R. China.

The photoelectrochemical properties of hematite-based photoanodes are hindered by severe carrier recombination and poor reaction activity, which is a major challenge. Herein, we coupled zirconium-doped α-FeO (Zr:FeO) and phosphating cobalt molybdate electrocatalyst (P-CoMoO) to ameliorate the above difficulties. The conductivity and carrier density of hematite significantly increase by Zr doping.

View Article and Find Full Text PDF

Salmonid fishes are well adapted to transition between salinities as part of a diadromid lifestyle, and many species are both economically and environmentally important. Ion-transporting gill epithelium helps fishes maintain ion balance during salinity transition. Recent transcriptomic surveys suggest that voltage-gated ion channels (VGICs) are present in gill epithelium of fishes.

View Article and Find Full Text PDF

Conjugated polymers (CPs) are considered one of the most important gas-sensing materials due to their unique features, combining the benefits of both metals and semiconductors, along with their outstanding mechanical properties and excellent processability. However, CPs with conventional morphological structures, such as largely amorphous and bulky matrices, face limitations in practical applications because of their inferior charge transport characteristics, low surface area, and insufficient sensitivity. Therefore, the design and development of novel morphological nanostructures in CPs have attracted significant attention as a promising strategy for improving morphological and electrical characteristics, thereby enabling a considerable increase in the sensing performance of corresponding gas sensors.

View Article and Find Full Text PDF

Exosome-mediated communication between T cells and dendritic cells: Implications for therapeutic strategies.

Cytokine

March 2025

Department of Pathology and Laboratory Medicine, Western University, London, Ontario, Canada; CTOAM | Cancer Treatment Options & Management, Vancouver, British Columbia, Canada. Electronic address:

Cell communication is crucial for coordinating physiological functions in multicellular organisms, with exosomes playing a significant role. Exosomes mediate intercellular communication by transporting proteins, lipids, and nucleic acids between cells. These small, membrane-bound vesicles, derived from the endosomal pathway, are integral to various biological processes, including signal transmission and cellular behavior modulation.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!