Diffraction assisted rough ground effect: models and data.

J Acoust Soc Am

Department of Design, Development, Environment and Materials, The Open University, Milton Keynes, MK7 6AA, United Kingdom.

Published: March 2013

The destructive interferences observed in Excess Attenuation (EA) spectra over periodically and randomly spaced roughness elements with different cross-sectional profiles (semicylindrical, rectangular and wedge-shaped strips) have been investigated. If the roughness is spaced periodically, then two or three destructive interference maxima are observed in the same frequency range as the one or two observed with randomly distributed roughness. Roughness-induced surface waves are investigated also. Their amplitudes and the frequencies at which they occur are found to depend on the roughness height, mean center-to-center spacing and the extent to which the roughness is periodic. A semianalytical Multiple Scattering Theory and a numerical method (the Boundary Element Method) have been used to make predictions of the EA spectra which are compared with measurements. In addition it is found that the effective surface impedance spectra deduced from complex EA measurements over rough surfaces exhibit resonances similar to those observed for a hard-backed porous layer. On this basis a heuristic effective impedance model for rough hard surfaces is developed and the corresponding predictions of EA spectra are compared with data.

Download full-text PDF

Source
http://dx.doi.org/10.1121/1.4776200DOI Listing

Publication Analysis

Top Keywords

predictions spectra
8
spectra compared
8
roughness
5
diffraction assisted
4
assisted rough
4
rough ground
4
ground models
4
models data
4
data destructive
4
destructive interferences
4

Similar Publications

Putting Charge Transfer Degree as a Bridge Connecting Surface-Enhanced Raman Spectroscopy and Photocatalysis.

Angew Chem Int Ed Engl

January 2025

Jilin University, State Key Laboratory of Supramolecular Structure and Materials, 2699 Qianjin Street, 130012, Changchun, CHINA.

To date, few systematic approach has been established for predicting catalytic performance by analyzing the spectral information of molecules adsorbed on photocatalyst surfaces. Effective charge transfer (CT) between the semiconductor photocatalysts and surface-absorbed molecules is essential for enhancing catalytic activity and optimizing light energy utilization. This study aimed to validate the surface-enhanced Raman spectroscopy (SERS) based on the CT enhancement mechanism in investigating the CT process during semiconductor photocatalytic C-C coupling model reactions.

View Article and Find Full Text PDF

Predicting Perovskite Photovoltaics Performance.

ACS Appl Mater Interfaces

January 2025

Department of Physics and Astronomy & Wright Center for Photovoltaic Innovation and Commercialization, The University of Toledo, Toledo, Ohio 43606, United States.

Wide band gap FACsPb(IBr) perovskite photovoltaic (PV) devices are measured by spectroscopic ellipsometry in the through-the-glass configuration and analyzed to determine the complex optical property spectra of the perovskite absorber as well as the structural properties of all constituent layers. This information is used to simulate external quantum efficiency (EQE) spectra, to calculate PV device performance parameters such as short circuit current density, open circuit voltage, fill factor, and power conversion efficiency, and to develop strategies for increasing the accuracy of predictions. Simulations and calculations tend to overestimate PV device performance parameters, undermining the accuracy and usefulness of those simulations.

View Article and Find Full Text PDF

In this paper, a series of novel quinazoline-4(3)-one-2-carbothioamide derivatives (8a-p) were designed and synthesized the Wilgerodt-Kindler reaction between 2-methylquinazoline-4-one 10 and amines using S/DMSO as the oxidizing system. Their characteristics were confirmed by IR, NMR, HRMS spectra, and their melting point. These novel derivatives (8a-p) were evaluated for their anti-inflammatory activity by inhibiting NO production in lipopolysaccharide (LPS)-activated RAW 264.

View Article and Find Full Text PDF

Optical Properties of Phenylthiolate-Capped CdS Nanoparticles.

J Phys Chem C Nanomater Interfaces

January 2025

Department of Chemistry, University College London, 20 Gordon Street, London WC1H 0AJ, U.K.

Using many-body perturbation theory, we study the optical properties of phenylthiolate-capped cadmium sulfide nanoparticles to understand the origin of the experimentally observed blue shift in those properties with decreasing particle size. We show that the absorption spectra predicted by many-body perturbation theory agree well with the experimentally measured spectra. The results of our calculations demonstrate that all low-energy excited states correspond to a mixture of two fundamental types of excitations: intraligand and ligand-to-metal charge-transfer excitations.

View Article and Find Full Text PDF

Previous studies have shown that milk citrate predicted by milk mid-infrared (MIR) spectra is strongly affected by a few genomic regions. This study aimed to explore the effect of weighted single-step GBLUP on the accuracy of genomic prediction (GP) for MIR-predicted milk citrate in early-lactation Holstein cows. A total of 134,517 test-day predicted milk citrate collected within the first 50 DIM on 52,198 Holstein cows from the first 5 parities were used.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!